scholarly journals Some Extremal Problems for Hereditary Properties of Graphs

10.37236/3419 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Vladimir Nikiforov

Given an infinite hereditary property of graphs $\mathcal{P}$, the principal extremal parameter of $\mathcal{P}$ is the value\[ \pi\left( \mathcal{P}\right) =\lim_{n\rightarrow\infty}\binom{n}{2}^{-1}\max\{e\left( G\right) :\text{ }G\in\mathcal{P}\text{ and }v\left(G\right) =n\}.\]The Erdős-Stone theorem gives $\pi\left( \mathcal{P}\right) $ if $\mathcal{P}$ is monotone, but this result does not apply to hereditary $\mathcal{P}$. Thus, one of the results of this note is to establish $\pi\left( \mathcal{P}\right) $ for any hereditary property $\mathcal{P}.$Similar questions are studied for the parameter $\lambda^{\left( p\right)}\left( G\right)$, defined for every real number $p\geq1$ and every graph $G$ of order $n$ as\[\lambda^{\left( p\right) }\left( G\right) =\max_{\left\vert x_{1}\right\vert^{p}\text{ }+\text{ }\cdots\text{ }+\text{ }\left\vert x_{n}\right\vert ^{p} \text{ }=\text{ }1}2\sum_{\{u,v\}\in E\left( G\right) }x_{u}x_{v}.\]It is shown that the limit\[ \lambda^{\left( p\right) }\left( \mathcal{P}\right) =\lim_{n\rightarrow\infty}n^{2/p-2}\max\{\lambda^{\left( p\right) }\left( G\right) :\text{ }G\in \mathcal{P}\text{ and }v\left( G\right) =n\}\]exists for every hereditary property $\mathcal{P}$.A key result of the note is the equality \[\lambda^{(p)}\left( \mathcal{P}\right) =\pi\left( \mathcal{P}\right) ,\]which holds for all $p>1.$ In particular, edge extremal problems andspectral extremal problems for graphs are asymptotically equivalent.

2011 ◽  
Vol 18 (04) ◽  
pp. 611-628
Author(s):  
K. Hambrook ◽  
S. L. Wismath

A characteristic algebra for a hereditary property of identities of a fixed type τ is an algebra [Formula: see text] such that for any variety V of type τ, we have [Formula: see text] if and only if every identity satisfied by V has the property p. This is equivalent to [Formula: see text] being a generator for the variety determined by all identities of type τ which have property p. Płonka has produced minimal (smallest cardinality) characteristic algebras for a number of hereditary properties, including regularity, normality, uniformity, biregularity, right- and leftmost, outermost, and external-compatibility. In this paper, we use a construction of Płonka to study minimal characteristic algebras for the property of rectangular k-normality. In particular, we construct minimal characteristic algebras of type (2) for k-normality and rectangularity for 1 ≤ k ≤ 3.


2012 ◽  
Vol 241-244 ◽  
pp. 2802-2806
Author(s):  
Hua Dong Wang ◽  
Bin Wang ◽  
Yan Zhong Hu

This paper defined the hereditary property (or constant property) concerning graph operation, and discussed various forms of the hereditary property under the circumstance of Cartesian product graph operation. The main conclusions include: The non-planarity and Hamiltonicity of graph are hereditary concerning the Cartesian product, but planarity of graph is not, Euler characteristic and non-hamiltonicity of graph are not hereditary as well. Therefore, when we applied this principle into practice, we testified that Hamilton cycle does exist in hypercube.


10.37236/2262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Ryan R. Martin

The edit distance between two graphs on the same labeled vertex set is the size of the symmetric difference of the edge sets.  The distance between a graph, G, and a hereditary property, ℋ, is the minimum of the distance between G and each G'∈ℋ.  The edit distance function of ℋ is a function of p∈[0,1] and is the limit of the maximum normalized distance between a graph of density p and ℋ.This paper utilizes a method due to Sidorenko [Combinatorica 13(1), pp. 109-120], called "symmetrization", for computing the edit distance function of various hereditary properties.  For any graph H, Forb(H) denotes the property of not having an induced copy of H.  This paper gives some results regarding estimation of the function for an arbitrary hereditary property. This paper also gives the edit distance function for Forb(H), where H is a cycle on 9 or fewer vertices.


10.37236/644 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Vadim V. Lozin ◽  
Colin Mayhill ◽  
Victor Zamaraev

For a graph property $X$, let $X_n$ be the number of graphs with vertex set $\{1,\ldots,n\}$ having property $X$, also known as the speed of $X$. A property $X$ is called factorial if $X$ is hereditary (i.e. closed under taking induced subgraphs) and $n^{c_1n}\le X_n\le n^{c_2n}$ for some positive constants $c_1$ and $c_2$. Hereditary properties with the speed slower than factorial are surprisingly well structured. The situation with factorial properties is more complicated and less explored, although this family includes many properties of theoretical or practical importance, such as planar graphs or graphs of bounded vertex degree. To simplify the study of factorial properties, we propose the following conjecture: the speed of a hereditary property $X$ is factorial if and only if the fastest of the following three properties is factorial: bipartite graphs in $X$, co-bipartite graphs in $X$ and split graphs in $X$. In this note, we verify the conjecture for hereditary properties defined by forbidden induced subgraphs with at most 4 vertices.


10.37236/4113 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Liying Kang ◽  
Vladimir Nikiforov

The $p$-spectral radius of a graph $G\ $of order $n$ is defined for any real number $p\geq1$ as$$\lambda^{(p)}(G) =\max\{ 2\sum_{\{i,j\}\in E(G)} x_ix_j:x_1,\ldots,x_n\in\mathbb{R}\text{ and }\vert x_{1}\vert ^{p}+\cdots+\vert x_n\vert^{p}=1\} .$$The most remarkable feature of $\lambda^{(p)}$ is that it seamlessly joins several other graph parameters, e.g., $\lambda^{(1)}$ is the Lagrangian, $\lambda^{(2)  }$ is the spectral radius and $\lambda^{(\infty)  }/2$ is the number of edges. This paper presents solutions to some extremal problems about $\lambda^{(p)}$, which are common generalizations of corresponding edge and spectral extremal problems.Let $T_{r}\left(  n\right)  $ be the $r$-partite Turán graph of order $n$. Two of the main results in the paper are:(I) Let $r\geq2$ and $p>1.$ If $G$ is a $K_{r+1}$-free graph of order $n$, then$$\lambda^{(p)}(G)  <\lambda^{(p)}(T_{r}(n)),$$ unless $G=T_{r}(n)$.(II) Let $r\geq2$ and $p>1.$ If $G\ $is a graph of order $n,$ with$$\lambda^{(p)}(G)>\lambda^{(p)}(  T_{r}(n))  ,$$then $G$ has an edge contained in at least $cn^{r-1}$ cliques of order $r+1$, where $c$ is a positive number depending only on $p$ and $r.$


2020 ◽  
Vol 52 (2) ◽  
pp. 563-587
Author(s):  
Idir Arab ◽  
Milto Hadjikyriakou ◽  
Paulo Eduardo Oliveira

AbstractWe study failure rate monotonicity and generalised convex transform stochastic ordering properties of random variables, with an emphasis on applications. We are especially interested in the effect of a tail-weight iteration procedure to define distributions, which is equivalent to the characterisation of moments of the residual lifetime at a given instant. For the monotonicity properties, we are mainly concerned with hereditary properties with respect to the iteration procedure providing counterexamples showing either that the hereditary property does not hold or that inverse implications are not true. For the stochastic ordering, we introduce a new criterion, based on the analysis of the sign variation of a suitable function. This criterion is then applied to prove ageing properties of parallel systems formed with components that have exponentially distributed lifetimes.


Filomat ◽  
2018 ◽  
Vol 32 (13) ◽  
pp. 4689-4700 ◽  
Author(s):  
Sang-Eon Han

The paper studies the open-hereditary property of semi-separation axioms and applies it to the study of digital topological spaces such as an n-dimensional Khalimsky topological space, a Marcus-Wyse topological space and so on. More precisely, we study various properties of digital topological spaces related to low-level and semi-separation axioms such as T1/2 , semi-T1/2 , semi-T1, semi-T2, etc. Besides, using the finite or the infinite product property of the semi-Ti-separation axiom, i ? {1,2}, we prove that the n-dimensional Khalimsky topological space is a semi-T2-space. After showing that not every subspace of the digital topological spaces satisfies the semi-Ti-separation axiom, i ?{1,2}, we prove that the semi-Tiseparation property is open-hereditary, i ? {1,2}. All spaces in the paper are assumed to be nonempty and connected.


10.37236/744 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
József Balogh ◽  
Ryan Martin

In this paper, we provide a method for determining the asymptotic value of the maximum edit distance from a given hereditary property. This method permits the edit distance to be computed without using Szemerédi's Regularity Lemma directly. Using this new method, we are able to compute the edit distance from hereditary properties for which it was previously unknown. For some graphs $H$, the edit distance from ${\rm Forb}(H)$ is computed, where ${\rm Forb}(H)$ is the class of graphs which contain no induced copy of graph $H$. Those graphs for which we determine the edit distance asymptotically are $H=K_a+E_b$, an $a$-clique with $b$ isolated vertices, and $H=K_{3,3}$, a complete bipartite graph. We also provide a graph, the first such construction, for which the edit distance cannot be determined just by considering partitions of the vertex set into cliques and cocliques. In the process, we develop weighted generalizations of Turán's theorem, which may be of independent interest.


10.37236/978 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
József Balogh ◽  
Béla Bollobás ◽  
Robert Morris

A collection of unlabelled tournaments ${\cal P}$ is called a hereditary property if it is closed under isomorphism and under taking induced sub-tournaments. The speed of ${\cal P}$ is the function $n \mapsto |{\cal P}_n|$, where ${\cal P}_n = \{T \in {\cal P} : |V(T)| = n\}$. In this paper, we prove that there is a jump in the possible speeds of a hereditary property of tournaments, from polynomial to exponential speed. Moreover, we determine the minimal exponential speed, $|{\cal P}_n| = c^{(1+o(1))n}$, where $c \simeq 1.47$ is the largest real root of the polynomial $x^3 = x^2 + 1$, and the unique hereditary property with this speed.


1990 ◽  
Vol 137 (6) ◽  
pp. 446
Author(s):  
M.G. Hill ◽  
N.E. Peeling ◽  
I.F. Currie ◽  
J.D. Morison ◽  
E.V. Whiting ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document