scholarly journals Symmetric Bowtie Decompositions of the Complete Graph

10.37236/373 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Simona Bonvicini ◽  
Beatrice Ruini

Given a bowtie decomposition of the complete graph $K_v$ admitting an automorphism group $G$ acting transitively on the vertices of the graph, we give necessary conditions involving the rank of the group and the cycle types of the permutations in $G$. These conditions yield non–existence results for instance when $G$ is the dihedral group of order $2v$, with $v\equiv 1, 9\pmod{12}$, or a group acting transitively on the vertices of $K_9$ and $K_{21}$. Furthermore, we have non–existence for $K_{13}$ when the group $G$ is different from the cyclic group of order $13$ or for $K_{25}$ when the group $G$ is not an abelian group of order $25$. Bowtie decompositions admitting an automorphism group whose action on vertices is sharply transitive, primitive or $1$–rotational, respectively, are also studied. It is shown that if the action of $G$ on the vertices of $K_v$ is sharply transitive, then the existence of a $G$–invariant bowtie decomposition is excluded when $v\equiv 9\pmod{12}$ and is equivalent to the existence of a $G$–invariant Steiner triple system of order $v$. We are always able to exclude existence if the action of $G$ on the vertices of $K_v$ is assumed to be $1$–rotational. If, instead, $G$ is assumed to act primitively then existence can be excluded when $v$ is a prime power satisfying some additional arithmetic constraint.

1991 ◽  
Vol 109 (3) ◽  
pp. 517-520
Author(s):  
Gerhard Behrendt

Let (X,≤) be a partially ordered set (in short, a poset). The automorphism group Aut (X,≤) is the group of all permutations g of X such that x ≤ y if and only if xg ≤ yg for all x,y∈X. We say that (X,≤) is sharply transitive if Aut(X,≤) is sharply transitive on X, that is, for x,y∈X there exists a unique g∈Aut(X,≤) with y = xg. Sharply transitive totally ordered sets have been studied by Ohkuma[4, 5], Glass, Gurevich, Holland and Shelah [3] (see also [2] and [6]). Whereas the only countable sharply transitive totally ordered set is the set of integers, there are a great variety of countable sharply transitive posets. Amongst other results, in [1] the author showed that there are countably many non-isomorphic sharply transitive posets whose automorphism group is infinite cyclic (and also gave a full description of those), whereas there are 2N0 non-isomorphic sharply transitive posets whose automorphism group is isomorphic to the additive group of the rational numbers. This suggests also that one should consider the analogous problem for free abelian groups. The purpose of this note is to show that whenever G is a countable free abelian group then there exists a sharply transitive poset whose automorphism group is isomorphic to G, and that there are already 2N0 non-isomorphic sharply transitive posets whose automorphism group is the free abelian group of rank 2.


2010 ◽  
Vol 88 (1) ◽  
pp. 93-102 ◽  
Author(s):  
MARGARYTA MYRONYUK

AbstractLet X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.


1973 ◽  
Vol 15 (4) ◽  
pp. 428-429 ◽  
Author(s):  
G. J. Hauptfleisch

If A, B, H, K are abelian group and φ: A → H and ψ: B → K are epimorphisms, then a given central group extension G of H by K is not necessarily a homomorphic image of a group extension of A by B. Take for instance A = Z(2), B = Z ⊕ Z, H = Z(2), K = V4 (Klein's fourgroup). Then the dihedral group D8 is a central extension of H by K but it is not a homomorphic image of Z ⊕ Z ⊕ Z(2), the only group extension of A by the free group B.


Author(s):  
Thomas J. Laffey ◽  
Desmond MacHale

AbstractLet G be a finite group and let Aut(G) be its automorphism group. Then G is called a k-orbit group if G has k orbits (equivalence classes) under the action of Aut(G). (For g, hG, we have g ~ h if ga = h for some Aut(G).) It is shown that if G is a k-orbit group, then kGp + 1, where p is the least prime dividing the order of G. The 3-orbit groups which are not of prime-power order are classified. It is shown that A5 is the only insoluble 4-orbit group, and a structure theorem is proved about soluble 4-orbit groups.


1998 ◽  
Vol 41 (3) ◽  
pp. 487-495 ◽  
Author(s):  
Graham Ellis

We show how the third integral homology of a group plays a role in determining whether a given group is isomorphic to an inner automorphism group. Various necessary conditions, and sufficient conditions, for the existence of such an isomorphism are obtained.


2007 ◽  
Vol 06 (01) ◽  
pp. 1-20 ◽  
Author(s):  
MICHAEL K. KINYON ◽  
J. D. PHILLIPS ◽  
PETR VOJTĚCHOVSKÝ

C-loops are loops satisfying the identity x(y · yz) = (xy · y)z. We develop the theory of extensions of C-loops, and characterize all nuclear extensions provided the nucleus is an abelian group. C-loops with central squares have very transparent extensions; they can be built from small blocks arising from the underlying Steiner triple system. Using these extensions, we decide for which abelian groups K and Steiner loops Q there is a nonflexible C-loop C with center K such that C/K is isomorphic to Q. We discuss possible orders of associators in C-loops. Finally, we show that the loops of signed basis elements in the standard real Cayley–Dickson algebras are C-loops.


Sign in / Sign up

Export Citation Format

Share Document