scholarly journals Lai's Conditions for Spanning and Dominating Closed Trails

10.37236/4511 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei-Guo Chen ◽  
Zhi-Hong Chen ◽  
Mei Lu

A graph is supereulerian if it has a spanning closed trail. For an integer $r$, let ${\cal Q}_0(r)$ be  the family of 3-edge-connected nonsupereulerian graphs of order at most $r$. For a graph $G$, define $\delta_L(G)=\min\{\max\{d(u), d(v) \}| \  \mbox{ for any $uv\in E(G)$} \}$. For a given integer $p\ge 2$ and a given real number $\epsilon$,  a graph $G$ of order $n$ is said to satisfy a Lai's condition if $\delta_L(G)\ge \frac{n}{p}-\epsilon$.  In this paper, we show that  if $G$ is  a  3-edge-connected graph of order $n$ with $\delta_L(G)\ge \frac{n}{p}-\epsilon$, then there is an integer $N(p, \epsilon)$ such that when $n> N(p,\epsilon)$, $G$ is supereulerian if and only if $G$ is not  a graph obtained from a  graph $G_p$ in the finite family ${\cal Q}_0(3p-5)$ by replacing some vertices in $G_p$ with nontrivial graphs. Results on the best possible Lai's  conditions for Hamiltonian line graphs of 3-edge-connected graphs or 3-edge-connected supereulerian graphs are given,  which are improvements of the results in [J. Graph Theory 42(2003) 308-319] and in [Discrete Mathematics, 310(2010) 2455-2459].


2003 ◽  
Vol 42 (4) ◽  
pp. 308-319 ◽  
Author(s):  
Zhi-Hong Chen ◽  
Hong-Jian Lai ◽  
Xiangwen Li ◽  
Deying Li ◽  
Jinzhong Mao


10.37236/8435 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kenneth Barrese

Two boards are rook equivalent if they have the same number of non-attacking rook placements for any number of rooks. Define a rook equivalence graph on an equivalence class of Ferrers boards by specifying that two boards are connected by an edge if you can obtain one of the boards by moving squares in the other board out of one column and into a single other column. Given such a graph, we characterize which boards will yield connected graphs. We also provide some cases where common graphs will or will not be the graph for some set of rook equivalent Ferrers boards. Finally, we extend this graph definition to the m-level rook placement generalization developed by Briggs and Remmel. This yields a graph on the set of rook equivalent singleton boards, and we characterize which singleton boards give rise to a connected graph.



2017 ◽  
Vol 09 (04) ◽  
pp. 1750046
Author(s):  
Jinto James ◽  
K. A. Germina ◽  
P. Shaini

A distance compatible set labeling (dcsl) of a connected graph [Formula: see text] is an injective set assignment [Formula: see text] [Formula: see text] being a non-empty ground set, such that the corresponding induced function [Formula: see text] given by [Formula: see text] satisfies [Formula: see text] for every pair of distinct vertices [Formula: see text] where [Formula: see text] denotes the path distance between [Formula: see text] and [Formula: see text] and [Formula: see text] is a constant, not necessarily an integer, depending on the pair of vertices [Formula: see text] chosen. A dcsl [Formula: see text] of [Formula: see text] is [Formula: see text]-uniform if all the constants of proportionality with respect to [Formula: see text] are equal to [Formula: see text] and if [Formula: see text] admits such a dcsl then [Formula: see text] is called a [Formula: see text]-uniform dcsl graph. The family [Formula: see text] is well-graded family, if there is a tight path between any two of its distinct sets. A learning graph is an [Formula: see text]-induced graph of a learning space. In this paper, we initiate a study on subgraphs of 1-uniform graphs which lead to the study of Knowledge Structures, Learning Spaces and Union-closed conjecture using graph theory techniques.



2019 ◽  
Vol 17 (1) ◽  
pp. 1490-1502 ◽  
Author(s):  
Jia-Bao Liu ◽  
Muhammad Javaid ◽  
Mohsin Raza ◽  
Naeem Saleem

Abstract The second smallest eigenvalue of the Laplacian matrix of a graph (network) is called its algebraic connectivity which is used to diagnose Alzheimer’s disease, distinguish the group differences, measure the robustness, construct multiplex model, synchronize the stability, analyze the diffusion processes and find the connectivity of the graphs (networks). A connected graph containing two or three cycles is called a bicyclic graph if its number of edges is equal to its number of vertices plus one. In this paper, firstly the unique graph with a minimum algebraic connectivity is characterized in the class of connected graphs whose complements are bicyclic with exactly three cycles. Then, we find the unique graph of minimum algebraic connectivity in the class of connected graphs $\begin{array}{} {\it\Omega}^c_{n}={\it\Omega}^c_{1,n}\cup{\it\Omega}^c_{2,n}, \end{array}$ where $\begin{array}{} {\it\Omega}^c_{1,n} \end{array}$ and $\begin{array}{} {\it\Omega}^c_{2,n} \end{array}$ are classes of the connected graphs in which the complement of each graph of order n is a bicyclic graph with exactly two and three cycles, respectively.



2019 ◽  
Vol 17 (1) ◽  
pp. 1319-1331
Author(s):  
Haiying Wang ◽  
Muhammad Javaid ◽  
Sana Akram ◽  
Muhammad Jamal ◽  
Shaohui Wang

Abstract Suppose that Γ is a graph of order n and A(Γ) = [ai,j] is its adjacency matrix such that ai,j is equal to 1 if vi is adjacent to vj and ai,j is zero otherwise, where 1 ≤ i, j ≤ n. In a family of graphs, a graph is called minimizing if the least eigenvalue of its adjacency matrix is minimum in the set of the least eigenvalues of all the graphs. Petrović et al. [On the least eigenvalue of cacti, Linear Algebra Appl., 2011, 435, 2357-2364] characterized a minimizing graph in the family of all cacti such that the complement of this minimizing graph is disconnected. In this paper, we characterize the minimizing graphs G ∈ $\begin{array}{} {\it\Omega}^c_n \end{array}$, i.e. $$\begin{array}{} \displaystyle \lambda_{min}(G)\leq\lambda_{min}(C^c) \end{array}$$ for each Cc ∈ $\begin{array}{} {\it\Omega}^c_n \end{array}$, where $\begin{array}{} {\it\Omega}^c_n \end{array}$ is a collection of connected graphs such that the complement of each graph of order n is a cactus with the condition that either its each block is only an edge or it has at least one block which is an edge and at least one block which is a cycle.



2021 ◽  
Vol 66 (3) ◽  
pp. 3-7
Author(s):  
Anh Nguyen Thi Thuy ◽  
Duyen Le Thi

Let l ≥ 1, k ≥ 1 be two integers. Given an edge-coloured connected graph G. A path P in the graph G is called l-rainbow path if each subpath of length at most l + 1 is rainbow. The graph G is called (k, l)-rainbow connected if any two vertices in G are connected by at least k pairwise internally vertex-disjoint l-rainbow paths. The smallest number of colours needed in order to make G (k, l)-rainbow connected is called the (k, l)-rainbow connection number of G and denoted by rck,l(G). In this paper, we first focus to improve the upper bound of the (1, l)-rainbow connection number depending on the size of connected graphs. Using this result, we characterize all connected graphs having the large (1, 2)-rainbow connection number. Moreover, we also determine the (1, l)-rainbow connection number in a connected graph G containing a sequence of cut-edges.



2016 ◽  
Vol 08 (03) ◽  
pp. 1650040 ◽  
Author(s):  
Shaohui Wang ◽  
Bing Wei

Let [Formula: see text] be multiplicative Zagreb index of a graph [Formula: see text]. A connected graph is a cactus graph if and only if any two of its cycles have at most one vertex in common, which is a generalization of trees and has been the interest of researchers in the field of material chemistry and graph theory. In this paper, we use a new tool to obtain the upper and lower bounds of [Formula: see text] for all cactus graphs and characterize the corresponding extremal graphs.



2005 ◽  
Vol 128 (3) ◽  
pp. 599-609 ◽  
Author(s):  
O. Shai ◽  
I. Polansky

The paper brings another view on detecting the dead-point positions of an arbitrary planar pin-connected linkage by employing the duality principle of graph theory. It is first shown how the dead-point positions are derived through the interplay between the linkage and its dual determinate truss—the relation developed in the previous works by means of graph theory. At the next stage, the process is shown to be performed solely upon the linkage by employing a new variable, the dual of potential, termed face force. Since the mathematical foundation of the presented method is discrete mathematics, the paper points to possible computerization of the method.



10.37236/1211 ◽  
1995 ◽  
Vol 2 (1) ◽  
Author(s):  
Carl Droms ◽  
Brigitte Servatius ◽  
Herman Servatius

We expand on Tutte's theory of $3$-blocks for $2$-connected graphs, generalizing it to apply to infinite, locally finite graphs, and giving necessary and sufficient conditions for a labeled tree to be the $3$-block tree of a $2$-connected graph.



2018 ◽  
Vol 12 (2) ◽  
pp. 297-317
Author(s):  
Encarnación Abajo ◽  
Rocío Casablanca ◽  
Ana Diánez ◽  
Pedro García-Vázquez

Let G be a connected graph with n vertices and let k be an integer such that 2 ? k ? n. The generalized connectivity kk(G) of G is the greatest positive integer l for which G contains at least l internally disjoint trees connecting S for any set S ? V (G) of k vertices. We focus on the generalized connectivity of the strong product G1 _ G2 of connected graphs G1 and G2 with at least three vertices and girth at least five, and we prove the sharp bound k3(G1 _ G2) ? k3(G1)_3(G2) + k3(G1) + k3(G2)-1.



Sign in / Sign up

Export Citation Format

Share Document