ferrers boards
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

10.37236/8435 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kenneth Barrese

Two boards are rook equivalent if they have the same number of non-attacking rook placements for any number of rooks. Define a rook equivalence graph on an equivalence class of Ferrers boards by specifying that two boards are connected by an edge if you can obtain one of the boards by moving squares in the other board out of one column and into a single other column. Given such a graph, we characterize which boards will yield connected graphs. We also provide some cases where common graphs will or will not be the graph for some set of rook equivalent Ferrers boards. Finally, we extend this graph definition to the m-level rook placement generalization developed by Briggs and Remmel. This yields a graph on the set of rook equivalent singleton boards, and we characterize which singleton boards give rise to a connected graph.


2019 ◽  
Vol 76 ◽  
pp. 199-207 ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

10.37236/6699 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Sen-Peng Eu ◽  
Tung-Shan Fu ◽  
Yu-Chang Liang ◽  
Tsai-Lien Wong

This paper studies the generalizations of the Stirling numbers of both kinds and the Lah numbers in association with the normal ordering problem in the Weyl algebra $W=\langle x,D|Dx-xD=1\rangle$. Any word $\omega\in W$ with $m$ $x$'s and $n$ $D$'s can be expressed in the normally ordered form $\omega=x^{m-n}\sum_{k\ge 0} {{\omega}\brace {k}} x^{k}D^{k}$, where ${{\omega}\brace {k}}$ is known as the Stirling number of the second kind for the word $\omega$. This study considers the expansions of restricted words $\omega$ in $W$ over the sequences $\{(xD)^{k}\}_{k\ge 0}$ and $\{xD^{k}x^{k-1}\}_{k\ge 0}$. Interestingly, the coefficients in individual expansions turn out to be generalizations of the Stirling numbers of the first kind and the Lah numbers. The coefficients will be determined through enumerations of some combinatorial structures linked to the words $\omega$, involving decreasing forest decompositions of quasi-threshold graphs and non-attacking rook placements on Ferrers boards. Extended to $q$-analogues, weighted refinements of the combinatorial interpretations are also investigated for words in the $q$-deformed Weyl algebra.


10.37236/6121 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Michael J. Schlosser ◽  
Meesue Yoo

Utilizing elliptic weights, we construct an elliptic analogue of rook numbers for Ferrers boards. Our elliptic rook numbers generalize Garsia and Remmel's $q$-rook numbers by two additional independent parameters $a$ and $b$, and a nome $p$. The elliptic rook numbers are shown to satisfy an elliptic extension of a  factorization theorem which in the classical case was established by Goldman, Joichi and White and extended to the $q$-case by Garsia and Remmel. We obtain similar results for elliptic analogues of Garsia and Remmel's $q$-file numbers for skyline boards. We also provide an elliptic extension of the $j$-attacking model introduced by Remmel and Wachs. Various applications of our results include elliptic analogues of (generalized) Stirling numbers of the first and second kind, Lah numbers, Abel numbers, and $r$-restricted versions thereof.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Kenneth Barrese ◽  
Bruce Sagan

International audience Partition the rows of a board into sets of $m$ rows called levels. An $m$-level rook placement is a subset of squares of the board with no two in the same column or the same level. We construct explicit bijections to prove three theorems about such placements. We start with two bijections between Ferrers boards having the same number of $m$-level rook placements. The first generalizes a map by Foata and Schützenberger and our proof applies to any Ferrers board. The second generalizes work of Loehr and Remmel. This construction only works for a special class of Ferrers boards but also yields a formula for calculating the rook numbers of these boards in terms of elementary symmetric functions. Finally we generalize another result of Loehr and Remmel giving a bijection between boards with the same hit numbers. The second and third bijections involve the Involution Principle of Garsia and Milne. Nous considérons les rangs d’un échiquier partagés en ensembles de $m$ rangs appelés les niveaux. Un $m$-placement des tours est un sous-ensemble des carrés du plateau tel qu’il n’y a pas deux carrés dans la même colonne ou dans le même niveau. Nous construisons deux bijections explicites entre des plateaux de Ferrers ayant les mêmes nombres de $m$-placements. La première est une généralisation d’une fonction de Foata et Schützenberger et notre démonstration est pour n’importe quels plateaux de Ferrers. La deuxième généralise une bijection de Loehr et Remmel. Cette construction marche seulement pour des plateaux particuliers, mais ça donne une formule pour le nombre de $m$-placements en terme des fonctions symétriques élémentaires. Enfin, nous généralisons un autre résultat de Loehr et Remmel donnant une bijection entre deux plateaux ayant les mêmes nombres de coups. Les deux dernières bijections utilisent le Principe des Involutions de Garsia et Milne.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

International audience Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the 321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelínek.


2012 ◽  
Vol 38 (1) ◽  
pp. 1-14
Author(s):  
Eric Clark ◽  
Matthew Zeckner

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

International audience In their paper on Wilf-equivalence for singleton classes, Backelin, West, and Xin introduced a transformation $\phi^*$, defined by an iterative process and operating on (all) full rook placements on Ferrers boards. Bousquet-Mélou and Steingrimsson proved the analogue of the main result of Backelin, West, and Xin in the context of involutions, and in so doing they needed to prove that $\phi^*$ commutes with the operation of taking inverses. The proof of this commutation result was long and difficult, and Bousquet-Mélou and Steingrimsson asked if $\phi^*$ might be reformulated in such a way as to make this result obvious. In the present paper we provide such a reformulation of $\phi^*$, by modifying the growth diagram algorithm of Fomin. This also answers a question of Krattenthaler, who noted that a bijection defined by the unmodified Fomin algorithm obviously commutes with inverses, and asked what the connection is between this bijection and $\phi^*$. Dans leur article sur l'équivalence de Wilf pour les classes de singletons, Backelin, West et Xin ont introduit une transformation $\phi^*$, définie par un processus itératif et opérant sur (tous) les placements complets de tours sur un plateau de Ferrers. Bousquet-Melou et Steingrimsson ont démontré l'analogue du résultat principal de Backelin, West et Xin dans le contexte d'involutions, et pour ce faire ont eu besoin de démontrer que $\phi^*$ commute avec l'opération inverse. La preuve de cette commutativité est longue et difficile, et Bousquet-Melou et Steingrômsson se demandèrent s'il n'était pas possible de reformuler $\phi^*$ de sorte que le resultat devienne évident. Dans le présent article, nous proposons une telle reformulation de $\phi^*$ en modifiant l'algorithme de croissance de diagramme de Fomin. Cette reformulation répond également à une question de Krattenthaler, qui, remarquant qu'une bijection définie par l'algorithme de Fomin non modifié commute évidemment avec l'opération inverse, se demanda quel était le rapport entre cette bijection et $\phi^*$.


Order ◽  
2006 ◽  
Vol 23 (2-3) ◽  
pp. 179-195 ◽  
Author(s):  
Mike Develin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document