induced graph
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 1)

2021 ◽  
Vol 23 ◽  
Author(s):  
Caijun Qin

This paper proposes a novel, exploration-based network sampling algorithm called caterpillar quota walk sampling (CQWS) inspired by the caterpillar tree. Network sampling identifies a subset of nodes and edges from a network, creating an induced graph. Beginning from an initial node, exploration-based sampling algorithms grow the induced set by traversing and tracking unvisited neighboring nodes from the original network. Tunable and trainable parameters allow CQWS to maximize the sum of the degrees of the induced graph from multiple trials when sampling dense networks. A network spread model renders effective use in various applications, including tracking the spread of epidemics, visualizing information transmissions through social media, and cell-to-cell spread of neurodegenerative diseases. CQWS generates a spread model as its sample by visiting the highest-degree neighbors of previously visited nodes. For each previously visited node, a top proportion of the highest-degree neighbors fulfills a quota and branches into a new caterpillar tree. Sampling more high-degree nodes constitutes an objective among various applications. Many exploration-based sampling algorithms suffer drawbacks that limit the sum of degrees of visited nodes and thus the number of high-degree nodes visited. Furthermore, a strategy may not be adaptable to volatile degree frequencies throughout the original network architecture, which influences how deep into the original network an algorithm could sample. This paper analyzes CQWS in comparison to four other exploration-based network in tackling these two problems by sampling sparse and dense randomly generated networks.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
V. R. Girish ◽  
P. Usha

<p>A set <em>D</em> - <em>V</em> is a dominating set of <em>G</em> if every vertex in <em>V - D</em> is adjacent to some vertex in <em>D</em>. The dominating number γ(<em>G</em>) of <em>G</em> is the minimum cardinality of a dominating set <em>D</em>. A dominating set <em>D</em> of a graph <em>G</em> = (<em>V;E</em>) is a split dominating set if the induced graph (<em>V</em> - <em>D</em>) is disconnected. The split domination number γ<em><sub>s</sub></em>(<em>G</em>) is the minimum cardinality of a split domination set. In this paper we have introduced a new method to obtain the split domination number of grid graphs by partitioning the vertex set in terms of star graphs and also we have<br />obtained the exact values of γ<em>s</em>(<em>G<sub>m;n</sub></em>); <em>m</em> ≤ <em>n</em>; <em>m,n</em> ≤ 24:</p>


Author(s):  
Chunheng Jiang ◽  
Jianxi Gao ◽  
Malik Magdon-Ismail

Inferring topological characteristics of complex networks from observed data is critical to understand the dynamical behavior of networked systems, ranging from the Internet and the World Wide Web to biological networks and social networks. Prior studies usually focus on the structure-based estimation to infer network sizes, degree distributions, average degrees, and more. Little effort attempted to estimate the specific degree of each vertex from a sampled induced graph, which prevents us from measuring the lethality of nodes in protein networks and influencers in social networks. The current approaches dramatically fail for a tiny sampled induced graph and require a specific sampling method and a large sample size. These approaches neglect information of the vertex state, representing the dynamical behavior of the networked system, such as the biomass of species or expression of a gene, which is useful for degree estimation. We fill this gap by developing a framework to infer individual vertex degrees using both information of the sampled topology and vertex state. We combine the mean-field theory with combinatorial optimization to learn vertex degrees. Experimental results on real networks with a variety of dynamics demonstrate that our framework can produce reliable degree estimates and dramatically improve existing link prediction methods by replacing the sampled degrees with our estimated degrees.


2020 ◽  
Vol 34 (01) ◽  
pp. 75-82
Author(s):  
Jun Guo ◽  
Heng Chang ◽  
Wenwu Zhu

To better pre-process unlabeled data, most existing feature selection methods remove redundant and noisy information by exploring some intrinsic structures embedded in samples. However, these unsupervised studies focus too much on the relations among samples, totally neglecting the feature-level geometric information. This paper proposes an unsupervised triplet-induced graph to explore a new type of potential structure at feature level, and incorporates it into simultaneous feature selection and clustering. In the feature selection part, we design an ordinal consensus preserving term based on a triplet-induced graph. This term enforces the projection vectors to preserve the relative proximity of original features, which contributes to selecting more relevant features. In the clustering part, Self-Paced Learning (SPL) is introduced to gradually learn from ‘easy’ to ‘complex’ samples. SPL alleviates the dilemma of falling into the bad local minima incurred by noise and outliers. Specifically, we propose a compelling regularizer for SPL to obtain a robust loss. Finally, an alternating minimization algorithm is developed to efficiently optimize the proposed model. Extensive experiments on different benchmark datasets consistently demonstrate the superiority of our proposed method.


2020 ◽  
Vol 26 (1) ◽  
pp. 55-63
Author(s):  
Girish V R ◽  
Usha P

A dominating set D of a graph G = (V;E) is a split dominating set ifthe induced graph hV 􀀀 Di is disconnected. The split domination number s(G)is the minimum cardinality of a split domination set. A graph G is called vertexsplit domination critical if s(G􀀀v) s(G) for every vertex v 2 G. A graph G iscalled edge split domination critical if s(G + e) s(G) for every edge e in G. Inthis paper, whether for some standard graphs are split domination vertex critical ornot are investigated and then characterized 2- ns-critical and 3- ns-critical graphswith respect to the diameter of a graph G with vertex removal. Further, it is shownthat there is no existence of s-critical graph for edge addition.


2019 ◽  
Vol 360 ◽  
pp. 220-229 ◽  
Author(s):  
Fuzhen Li ◽  
Zhenfeng Zhu ◽  
Xingxing Zhang ◽  
Jian Cheng ◽  
Yao Zhao

Sign in / Sign up

Export Citation Format

Share Document