scholarly journals Ramsey Numbers of Trees Versus Odd Cycles

10.37236/5731 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Matthew Brennan

Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey numbers of trees versus odd cycles, proving that $R(T_n, C_m) = 2n - 1$ for all odd $m \ge 3$ and $n \ge 756m^{10}$, where $T_n$ is a tree with $n$ vertices and $C_m$ is an odd cycle of length $m$. They proposed to study the minimum positive integer $n_0(m)$ such that this result holds for all $n \ge n_0(m)$, as a function of $m$. In this paper, we show that $n_0(m)$ is at most linear. In particular, we prove that $R(T_n, C_m) = 2n - 1$ for all odd $m \ge 3$ and $n \ge 25m$. Combining this with a result of Faudree, Lawrence, Parsons and Schelp yields $n_0(m)$ is bounded between two linear functions, thus identifying $n_0(m)$ up to a constant factor.

10.37236/1662 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
Benny Sudakov

The Ramsey number $r(C_l, K_n)$ is the smallest positive integer $m$ such that every graph of order $m$ contains either cycle of length $l$ or a set of $n$ independent vertices. In this short note we slightly improve the best known upper bound on $r(C_l, K_n)$ for odd $l$.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 764
Author(s):  
Yaser Rowshan ◽  
Mostafa Gholami ◽  
Stanford Shateyi

For given graphs G1,G2,…,Gn and any integer j, the size of the multipartite Ramsey number mj(G1,G2,…,Gn) is the smallest positive integer t such that any n-coloring of the edges of Kj×t contains a monochromatic copy of Gi in color i for some i, 1≤i≤n, where Kj×t denotes the complete multipartite graph having j classes with t vertices per each class. In this paper, we computed the size of the multipartite Ramsey numbers mj(K1,2,P4,nK2) for any j,n≥2 and mj(nK2,C7), for any j≤4 and n≥2.


10.37236/4673 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Alan Frieze ◽  
Wesley Pegden

We consider the question of the existence of homomorphisms between $G_{n,p}$ and odd cycles when $p=c/n$, $1<c\leq 4$. We show that for any positive integer $\ell$, there exists $\epsilon=\epsilon(\ell)$ such that if $c=1+\epsilon$ then w.h.p. $G_{n,p}$ has a homomorphism from $G_{n,p}$ to $C_{2\ell+1}$ so long as its odd-girth is at least $2\ell+1$. On the other hand, we show that if $c=4$ then w.h.p. there is no homomorphism from $G_{n,p}$ to $C_5$. Note that in our range of interest, $\chi(G_{n,p})=3$ w.h.p., implying that there is a homomorphism from $G_{n,p}$ to $C_3$.  These results imply the existence of random graphs with circular chromatic numbers $\chi_c$ satisfying $2<\chi_c(G)<2+\delta$ for arbitrarily small $\delta$, and also that $2.5\leq \chi_c(G_{n,\frac 4 n})<3$ w.h.p.


2008 ◽  
Vol Vol. 10 no. 3 (Graph and Algorithms) ◽  
Author(s):  
Dariusz Dereniowski ◽  
Adam Nadolski

Graphs and Algorithms International audience We study two variants of edge-coloring of edge-weighted graphs, namely compact edge-coloring and circular compact edge-coloring. First, we discuss relations between these two coloring models. We prove that every outerplanar bipartite graph admits a compact edge-coloring and that the decision problem of the existence of compact circular edge-coloring is NP-complete in general. Then we provide a polynomial time 1:5-approximation algorithm and pseudo-polynomial exact algorithm for compact circular coloring of odd cycles and prove that it is NP-hard to optimally color these graphs. Finally, we prove that if a path P2 is joined by an edge to an odd cycle then the problem of the existence of a compact circular coloring becomes NP-complete.


2008 ◽  
Vol 8 (6&7) ◽  
pp. 579-594
Author(s):  
G. Ivanyos

An important special case of the hidden subgroup problem is equivalent to the hidden shift problem over abelian groups. An efficient solution to the latter problem could serve as a building block of quantum hidden subgroup algorithms over solvable groups. The main idea of a promising approach to the hidden shift problem is a reduction to solving systems of certain random disequations in finite abelian groups. By a disequation we mean a constraint of the form $f(x)\neq 0$. In our case, the functions on the left hand side are generalizations of linear functions. The input is a random sample of functions according to a distribution which is up to a constant factor uniform over the "linear" functions $f$ such that $f(u)\neq 0$ for a fixed, although unknown element $u\in A$. The goal is to find $u$, or, more precisely, all the elements $u'\in A$ satisfying the same disequations as $u$. In this paper we give a classical probabilistic algorithm which solves the problem in an abelian $p$-group $A$ in time polynomial in the sample size $N$, where $N=(\log\size{A})^{O(q^2)}$, and $q$ is the exponent of $A$.


10.37236/6999 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Richard H. Hammack ◽  
Wilfried Imrich

It is known that for graphs $A$ and $B$ with odd cycles, the direct product $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. But this is not necessarily true if one of $A$ or $B$ is bipartite, and until now there has been no characterization of such vertex-transitive direct products. We prove that if $A$ and $B$ are both bipartite, or both non-bipartite, then $A\times B$ is vertex-transitive if and only if both $A$ and $B$ are vertex-transitive. Also, if $A$ has an odd cycle and $B$ is bipartite, then $A\times B$ is vertex-transitive if and only if both $A\times K_2$ and $B$ are vertex-transitive.


2016 ◽  
Vol 339 (10) ◽  
pp. 2481-2489 ◽  
Author(s):  
Meng Liu ◽  
Yusheng Li
Keyword(s):  

10.37236/2598 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Tom Bohman ◽  
Ron Holzman ◽  
Venkatesh Natarajan

We give an upper bound on the independence number of the cube of the odd cycle $C_{8n+5}$. The best known lower bound is conjectured to be the truth; we prove the conjecture in the case $8n+5$ prime and, within $2$, for general $n$.


2019 ◽  
Vol 363 ◽  
pp. 124613
Author(s):  
Meng Liu ◽  
Yusheng Li ◽  
Qizhong Lin
Keyword(s):  

2000 ◽  
Vol 3 ◽  
pp. 1-3
Author(s):  
A SCHELTEN ◽  
I SCHIERMEYER ◽  
R FAUDREE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document