scholarly journals On solving systems of random linear disequations

2008 ◽  
Vol 8 (6&7) ◽  
pp. 579-594
Author(s):  
G. Ivanyos

An important special case of the hidden subgroup problem is equivalent to the hidden shift problem over abelian groups. An efficient solution to the latter problem could serve as a building block of quantum hidden subgroup algorithms over solvable groups. The main idea of a promising approach to the hidden shift problem is a reduction to solving systems of certain random disequations in finite abelian groups. By a disequation we mean a constraint of the form $f(x)\neq 0$. In our case, the functions on the left hand side are generalizations of linear functions. The input is a random sample of functions according to a distribution which is up to a constant factor uniform over the "linear" functions $f$ such that $f(u)\neq 0$ for a fixed, although unknown element $u\in A$. The goal is to find $u$, or, more precisely, all the elements $u'\in A$ satisfying the same disequations as $u$. In this paper we give a classical probabilistic algorithm which solves the problem in an abelian $p$-group $A$ in time polynomial in the sample size $N$, where $N=(\log\size{A})^{O(q^2)}$, and $q$ is the exponent of $A$.

2004 ◽  
Vol 4 (3) ◽  
pp. 229-235
Author(s):  
D. Gavinsky

The Hidden Subgroup Problem (HSP) has been widely studied in the context of quantum computing and is known to be efficiently solvable for Abelian groups, yet appears to be difficult for many non-Abelian ones. An efficient algorithm for the HSP over a group \f G\ runs in time polynomial in \f{n\deq\log|G|.} For any subgroup \f H\ of \f G, let \f{N(H)} denote the normalizer of \f H. Let \MG\ denote the intersection of all normalizers in \f G (i.e., \f{\MG=\cap_{H\leq G}N(H)}). \MG\ is always a subgroup of \f G and the index \f{[G:\MG]} can be taken as a measure of ``how non-Abelian'' \f G is (\f{[G:\MG] = 1} for Abelian groups). This measure was considered by Grigni, Schulman, Vazirani and Vazirani, who showed that whenever \f{[G:\MG]\in\exp(O(\log^{1/2}n))} the corresponding HSP can be solved efficiently (under certain assumptions). We show that whenever \f{[G:\MG]\in\poly(n)} the corresponding HSP can be solved efficiently, under the same assumptions (actually, we solve a slightly more general case of the HSP and also show that some assumptions may be relaxed).


2017 ◽  
Vol 18 (2) ◽  
pp. 0215 ◽  
Author(s):  
Demerson Nunes Gonçalves ◽  
Tharso D Fernandes ◽  
C M M Cosme

The hidden subgroup problem (HSP) plays an important role in quantum computation, because many quantum algorithms that are exponentially faster than classical algorithms are special cases of the HSP. In this paper we show that there exist a new efficient quantum algorithm for the HSP on groups $\Z_{N}\rtimes\Z_{q^s}$ where $N$ is an integer with a special prime factorization, $q$ prime number and $s$ any positive integer.


2007 ◽  
Vol 7 (5&6) ◽  
pp. 504-521
Author(s):  
A.M. Childs ◽  
P. Wocjan

We consider an approach to deciding isomorphism of rigid n-vertex graphs (and related isomorphism problems) by solving a nonabelian hidden shift problem on a quantum computer using the standard method. Such an approach is arguably more natural than viewing the problem as a hidden subgroup problem. We prove that the hidden shift approach to rigid graph isomorphism is hard in two senses. First, we prove that \Omega(n) copies of the hidden shift states are necessary to solve the problem (whereas O(n\log n) copies are sufficient). Second, we prove that if one is restricted to single-register measurements, an exponential number of hidden shift states are required.


2009 ◽  
Vol 9 (3&4) ◽  
pp. 215-230
Author(s):  
T. Decker ◽  
J. Draisma ◽  
P. Wocjan

We consider a natural generalization of an abelian Hidden Subgroup Problem where the subgroups and their cosets correspond to graphs of linear functions over a finite field $\F$ with $d$ elements. The hidden functions of the generalized problem are not restricted to be linear but can also be $m$-variate polynomial functions of total degree $n\geq 2$. The problem of identifying hidden $m$-variate polynomials of degree less or equal to $n$ for fixed $n$ and $m$ is hard on a classical computer since $\Omega(\sqrt{d})$ black-box queries are required to guarantee a constant success probability. In contrast, we present a quantum algorithm that correctly identifies such hidden polynomials for all but a finite number of values of $d$ with constant probability and that has a running time that is only polylogarithmic in $d$.


2014 ◽  
Vol 14 (5&6) ◽  
pp. 467-492
Author(s):  
Asif Shakeel

The Hidden Subgroup Problem (HSP) is at the forefront of problems in quantum algorithms. In this paper, we introduce a new query, the \textit{character} query, generalizing the well-known phase kickback trick that was first used successfully to efficiently solve Deutsch's problem. An equal superposition query with $\vert 0 \rangle$ in the response register is typically used in the ``standard method" of single-query algorithms for the HSP. The proposed character query improves over this query by maximizing the success probability of subgroup identification under a uniform prior, for the HSP in which the oracle functions take values in a finite abelian group. We apply our results to the case when the subgroups are drawn from a set of conjugate subgroups and obtain a success probability greater than that found by Moore and Russell.


2008 ◽  
Vol 8 (3&4) ◽  
pp. 345-358
Author(s):  
M. Hayashi ◽  
A. Kawachi ◽  
H. Kobayashi

One of the central issues in the hidden subgroup problem is to bound the sample complexity, i.e., the number of identical samples of coset states sufficient and necessary to solve the problem. In this paper, we present general bounds for the sample complexity of the identification and decision versions of the hidden subgroup problem. As a consequence of the bounds, we show that the sample complexity for both of the decision and identification versions is $\Theta(\log|\HH|/\log p)$ for a candidate set $\HH$ of hidden subgroups in the case \REVISE{where the candidate nontrivial subgroups} have the same prime order $p$, which implies that the decision version is at least as hard as the identification version in this case. In particular, it does so for the important \REVISE{cases} such as the dihedral and the symmetric hidden subgroup problems. Moreover, the upper bound of the identification is attained \REVISE{by a variant of the pretty good measurement}. \REVISE{This implies that the concept of the pretty good measurement is quite useful for identification of hidden subgroups over an arbitrary group with optimal sample complexity}.


2017 ◽  
Vol 27 (04) ◽  
pp. 351-360
Author(s):  
Andrey Chekhlov ◽  
Peter Danchev

We define the concept of an [Formula: see text]-co-Hopfian abelian group, which is a nontrivial generalization of the classical notion of a co-Hopfian group. A systematic and comprehensive study of these groups is given in very different ways. Specifically, a representation theorem for [Formula: see text]-co-Hopfian groups is established as well as it is shown that there exists an [Formula: see text]-co-Hopfian group which is not co-Hopfian.


10.37236/5731 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Matthew Brennan

Burr, Erdős, Faudree, Rousseau and Schelp initiated the study of Ramsey numbers of trees versus odd cycles, proving that $R(T_n, C_m) = 2n - 1$ for all odd $m \ge 3$ and $n \ge 756m^{10}$, where $T_n$ is a tree with $n$ vertices and $C_m$ is an odd cycle of length $m$. They proposed to study the minimum positive integer $n_0(m)$ such that this result holds for all $n \ge n_0(m)$, as a function of $m$. In this paper, we show that $n_0(m)$ is at most linear. In particular, we prove that $R(T_n, C_m) = 2n - 1$ for all odd $m \ge 3$ and $n \ge 25m$. Combining this with a result of Faudree, Lawrence, Parsons and Schelp yields $n_0(m)$ is bounded between two linear functions, thus identifying $n_0(m)$ up to a constant factor.


Sign in / Sign up

Export Citation Format

Share Document