scholarly journals Line Graphs of Monogenic Semigroup Graphs

2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Nihat Akgunes ◽  
Yasar Nacaroglu ◽  
Sedat Pak

The concept of monogenic semigroup graphs Γ S M is firstly introduced by Das et al. (2013) based on zero divisor graphs. In this study, we mainly discuss the some graph properties over the line graph L Γ S M of Γ S M . In detail, we prove the existence of graph parameters, namely, radius, diameter, girth, maximum degree, minimum degree, chromatic number, clique number, and domination number over L Γ S M .

10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


Author(s):  
Henry Garrett

Constructing new graph from the graph's parameters and related notions in the way that, the study on the new graph and old graph in their parameters could be facilitated. As graph, new graph has some characteristics and results which are related to the structure of this graph. For this purpose, regular graph is considered so the internal relation and external relation on this new graph are studied. The kind of having same number of edges when this number is originated by common number of graphs like maximum degree, minimum degree, domination number, coloring number and clique number, is founded in the word of having regular graph


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Andrew D. King ◽  
Bruce A. Reed ◽  
Adrian R. Vetta

International audience It was conjectured by Reed [reed98conjecture] that for any graph $G$, the graph's chromatic number $χ (G)$ is bounded above by $\lceil Δ (G) +1 + ω (G) / 2\rceil$ , where $Δ (G)$ and $ω (G)$ are the maximum degree and clique number of $G$, respectively. In this paper we prove that this bound holds if $G$ is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph $G$ and produces a colouring that achieves our bound.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Khalida Nazzal ◽  
Manal Ghanem

Let Γ(ℤn[i]) be the zero divisor graph for the ring of the Gaussian integers modulo n. Several properties of the line graph of Γ(ℤn[i]), L(Γ(ℤn[i])) are studied. It is determined when L(Γ(ℤn[i])) is Eulerian, Hamiltonian, or planer. The girth, the diameter, the radius, and the chromatic and clique numbers of this graph are found. In addition, the domination number of L(Γ(ℤn[i])) is given when n is a power of a prime. On the other hand, several graph invariants for Γ(ℤn[i]) are also determined.


2013 ◽  
Vol Vol. 15 no. 3 (Graph Theory) ◽  
Author(s):  
Delia Garijo ◽  
Antonio González ◽  
Alberto Márquez

Graph Theory International audience We study a graph parameter related to resolving sets and metric dimension, namely the resolving number, introduced by Chartrand, Poisson and Zhang. First, we establish an important difference between the two parameters: while computing the metric dimension of an arbitrary graph is known to be NP-hard, we show that the resolving number can be computed in polynomial time. We then relate the resolving number to classical graph parameters: diameter, girth, clique number, order and maximum degree. With these relations in hand, we characterize the graphs with resolving number 3 extending other studies that provide characterizations for smaller resolving number.


2019 ◽  
Vol 62 (1) ◽  
pp. 23-35
Author(s):  
Wouter Cames van Batenburg ◽  
Ross J. Kang

AbstractLet $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.


2017 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Kemal Toker

$\Gamma (SL_{X})$ is defined and has been investigated in (Toker, 2016). In this paper our main aim is to extend this study over  $\Gamma (SL_{X})$ to the tensor product. The diameter, radius, girth, domination number, independence number, clique number, chromatic number and chromatic index of $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ has been established. Moreover, we have determined when $\Gamma (SL_{X_{1}})\otimes \Gamma (SL_{X_{2}})$ is a perfect graph.


Author(s):  
Amitav Doley ◽  
Jibonjyoti Buragohain ◽  
A. Bharali

The inverse sum indeg (ISI) index of a graph G is defined as the sum of the weights dG(u)dG(v)/dG(u)+dG(v) of all edges uv in G, where dG(u) is the degree of the vertex u in G. This index is found to be a significant predictor of total surface area of octane isomers. In this chapter, the authors present some lower and upper bounds for ISI index of subdivision graphs, t-subdivision graphs, s-sum and st -sum of graphs in terms of some graph parameters such as order, size, maximum degree, minimum degree, and the first Zagreb index. The extremal graphs are also characterized for their sharpness.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750121 ◽  
Author(s):  
Mahdi Reza Khorsandi ◽  
Atefeh Shekofteh

In this paper, we study the zero-divisor graph [Formula: see text] of a poset [Formula: see text] and its line graph [Formula: see text]. We characterize all posets whose [Formula: see text] are star, finite complete bipartite or finite. Also, we prove that the diameter of [Formula: see text] is at most 3 while its girth is either 3, 4 or [Formula: see text]. We also characterize [Formula: see text] in terms of their diameter and girth. Finally, we classify all posets [Formula: see text] whose [Formula: see text] are planar.


Sign in / Sign up

Export Citation Format

Share Document