scholarly journals Vertex Subsets with Minimal Width and Dual Width in $Q$-Polynomial Distance-Regular Graphs

10.37236/654 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Hajime Tanaka

We study $Q$-polynomial distance-regular graphs from the point of view of what we call descendents, that is to say, those vertex subsets with the property that the width $w$ and dual width $w^*$ satisfy $w+w^*=d$, where $d$ is the diameter of the graph. We show among other results that a nontrivial descendent with $w\geq 2$ is convex precisely when the graph has classical parameters. The classification of descendents has been done for the $5$ classical families of graphs associated with short regular semilattices. We revisit and characterize these families in terms of posets consisting of descendents, and extend the classification to all of the $15$ known infinite families with classical parameters and with unbounded diameter.

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ying Ying Tan ◽  
Xiaoye Liang ◽  
Jack Koolen

In the survey paper by Van Dam, Koolen and Tanaka (2016), they asked to classify the thin $Q$-polynomial distance-regular graphs. In this paper, we show that a thin distance-regular graph with the same intersection numbers as a Grassmann graph $J_q(n, D)~ (n \geqslant 2D)$ is the Grassmann graph if $D$ is large enough.


1989 ◽  
pp. 193-213 ◽  
Author(s):  
Andries E. Brouwer ◽  
Arjeh M. Cohen ◽  
Arnold Neumaier

Author(s):  
R. M. Damerell

In this paper, we shall first describe the theory of distance-regular graphs and then apply it to the classification of Moore graphs. The object of the paper is to prove that there are no Moore graphs (other than polygons) of diameter ≥ 3. An independent proof of this result has been given by Barmai and Ito(1). Taken with the result of (4), this shows that the only possible Moore graphs are the following:


2021 ◽  
Vol 37 ◽  
pp. 434-491
Author(s):  
Kazumasa Nomura ◽  
Paul Terwilliger

There is a concept in linear algebra called a tridiagonal pair. The concept was motivated by the theory of $Q$-polynomial distance-regular graphs. We give a tutorial introduction to tridiagonal pairs, working with a special case as a concrete example. The special case is called totally bipartite, or totally bipartite (TB). Starting from first principles, we give an elementary but comprehensive account of TB tridiagonal pairs. The following topics are discussed: (i) the notion of a TB tridiagonal system; (ii) the eigenvalue array; (iii) the standard basis and matrix representations; (iv) the intersection numbers; (v) the Askey--Wilson relations; (vi) a recurrence involving the eigenvalue array; (vii) the classification of TB tridiagonal systems; (viii) self-dual TB tridiagonal pairs and systems; (ix) the $\mathbb{Z}_3$-symmetric Askey--Wilson relations; (x) some automorphisms and antiautomorphisms associated with a TB tridiagonal pair; and (xi) an action of the modular group ${\rm PSL}_2(\mathbb{Z})$ associated with a TB tridiagonal pair.


COMBINATORICA ◽  
1988 ◽  
Vol 8 (1) ◽  
pp. 125-132 ◽  
Author(s):  
P. Terwilliger

2003 ◽  
Vol DMTCS Proceedings vol. AB,... (Proceedings) ◽  
Author(s):  
Anahi Gajardo

International audience The Langton's ant is studied from the point of view of topological dynamical systems. A new approach which associate a subshift to the system is proposed.The transition rule is generalized to the family of bi-regular graphs $\Gamma(k,d)$ and the dependence of the dynamical system on $k$ and $d$ is analyzed. A classification of the $\Gamma (k,d)$ graphs based on the dynamical properties of the subshift is established. Also a hierarchy is defined on the graphs through the subset relation of the respective subshifts. The analysis are worked out by establishing an algebraic characterization of the forbidden words of the subshift.


Author(s):  
Masoumeh Koohestani ◽  
◽  
Nobuaki Obata ◽  
Hajime Tanaka ◽  
◽  
...  

We determine the possible scaling limits in the quantum central limit theorem with respect to the Gibbs state, for a growing distance-regular graph that has so-called classical parameters with base unequal to one. We also describe explicitly the corresponding weak limits of the normalized spectral distribution of the adjacency matrix. We demonstrate our results with the known infinite families of distance-regular graphs having classical parameters and with unbounded diameter.


10.37236/3356 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Yu-pei Huang ◽  
Yeh-jong Pan ◽  
Chih-wen Weng

Let $\Gamma$ denote a distance-regular graph with diameter $D \geq 3$ and intersection numbers $a_1=0, a_2 \neq 0$, and $c_2=1$. We show a connection between the $d$-bounded property and the nonexistence of parallelograms of any length up to $d+1$. Assume further that $\Gamma$ is with classical parameters $(D, b, \alpha, \beta)$, Pan and Weng (2009) showed that $(b, \alpha, \beta)= (-2, -2, ((-2)^{D+1}-1)/3).$ Under the assumption $D \geq 4$, we exclude this class of graphs by an application of the above connection.


Sign in / Sign up

Export Citation Format

Share Document