scholarly journals Pattern Avoidance in Ascent Sequences

10.37236/713 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Paul Duncan ◽  
Einar Steingrímsson

Ascent sequences are sequences of nonnegative integers with restrictions on the size of each letter, depending on the number of ascents preceding it in the sequence. Ascent sequences have recently been related to $(2+2)$-free posets and various other combinatorial structures. We study pattern avoidance in ascent sequences, giving several results for patterns of lengths up to 4, for Wilf equivalence and for growth rates. We establish bijective connections between pattern avoiding ascent sequences and various other combinatorial objects, in particular with set partitions. We also make a number of conjectures related to all of these aspects.

10.37236/2976 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards.We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bóna for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelínek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.


10.37236/4479 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
Andrew M. Baxter ◽  
Lara K. Pudwell

Ascent sequences were introduced by Bousquet-Melou et al. in connection with (2+2)-avoiding posets and their pattern avoidance properties were first considered by Duncan and Steingrímsson. In this paper, we consider ascent sequences of length $n$ avoiding two patterns of length 3, and we determine an exact enumeration for 16 different pairs of patterns. Methods include simple recurrences, bijections to other combinatorial objects (including Dyck paths and pattern-avoiding permutations), and generating trees. We also provide an analogue of the Erdős-Szekeres Theorem to prove that any sufficiently long ascent sequence contains either many copies of the same number or a long increasing subsequence, with a precise bound.


Filomat ◽  
2015 ◽  
Vol 29 (4) ◽  
pp. 703-712
Author(s):  
Toufik Mansour ◽  
Mark Shattuck

An ascent sequence is one consisting of non-negative integers in which the size of each letter is restricted by the number of ascents preceding it in the sequence. Ascent sequences have recently been shown to be related to (2+2)-free posets and a variety of other combinatorial structures. Let Fn denote the Fibonacci sequence given by the recurrence Fn = Fn-1 + Fn-2 if n ? 2, with F0 = 0 and F1 = 1. In this paper, we draw connections between ascent sequences and the Fibonacci numbers by showing that several pattern-avoidance classes of ascent sequences are enumerated by either Fn+1 or F2n-1. We make use of both algebraic and combinatorial methods to establish our results. In one of the apparently more difficult cases, we make use of the kernel method to solve a functional equation and thus determine the distribution of some statistics on the avoidance class in question. In two other cases, we adapt the scanning-elements algorithm, a technique which has been used in the enumeration of certain classes of pattern-avoiding permutations, to the comparable problem concerning pattern-avoiding ascent sequences.


2016 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

In 2000 Klazar introduced a new notion of pattern avoidance in the context of set partitions of $[n]=\{1,\ldots, n\}$. The purpose of the present paper is to undertake a study of the concept of Wilf-equivalence based on Klazar's notion. We determine all Wilf-equivalences for partitions with exactly two blocks, one of which is a singleton block, and we conjecture that, for $n\geq 4$, these are all the Wilf-equivalences except for those arising from complementation. If $\tau$ is a partition of $[k]$ and $\Pi_n(\tau)$ denotes the set of all partitions of $[n]$ that avoid $\tau$, we establish inequalities between $|\Pi_n(\tau_1)|$ and $|\Pi_n(\tau_2)|$ for several choices of $\tau_1$ and $\tau_2$, and we prove that if $\tau_2$ is the partition of $[k]$ with only one block, then $|\Pi_n(\tau_1)| <|\Pi_n(\tau_2)|$ for all $n>k$ and all partitions $\tau_1$ of $[k]$ with exactly two blocks. We conjecture that this result holds for all partitions $\tau_1$ of $[k]$. Finally, we enumerate $\Pi_n(\tau)$ for all partitions $\tau$ of $[4]$. Comment: 21 pages


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Mark Dukes ◽  
Yvan Le Borgne

International audience We give a polyomino characterisation of recurrent configurations of the sandpile model on the complete bipartite graph $K_{m,n}$ in which one designated vertex is the sink. We present a bijection from these recurrent configurations to decorated parallelogram polyominoes whose bounding box is a $m×n$ rectangle. Other combinatorial structures appear in special cases of this correspondence: for example bicomposition matrices (a matrix analogue of set partitions), and (2+2)-free posets. A canonical toppling process for recurrent configurations gives rise to a path within the associated parallelogram polyominoes. We define a collection of polynomials that we call $q,t$-Narayana polynomials, the generating functions of the bistatistic $(\mathsf{area ,parabounce} )$ on the set of parallelogram polyominoes, akin to Haglund's $(\mathsf{area ,hagbounce} )$ bistatistic on Dyck paths. In doing so, we have extended a bistatistic of Egge et al. to the set of parallelogram polyominoes. This is one answer to their question concerning extensions to other combinatorial objects. We conjecture the $q,t$-Narayana polynomials to be symmetric and discuss the proofs for numerous special cases. We also show a relationship between the $q,t$-Catalan polynomials and our bistatistic $(\mathsf{area ,parabounce}) $on a subset of parallelogram polyominoes. Pour le modèle du tas de sable sur un graphe $K_m,n$ biparti complet, on donne une description des configurations rècurrentes à l'aide d'une bijection avec des polyominos parallèlogrammes dècorès de rectangle englobant $m×n$. D'autres classes combinatoires apparaissent comme des cas particuliers de cette construction: par exemple les matrices de bicomposition et les ordres partiels évitant le motif (2+2). Un processus d'éboulement canonique des configurations récurrentes se traduit par un chemin bondissant dans le polyomino parallèlogramme associè. Nous définissons une famille de polynômes, baptisée de $q,t$-Narayana, à travers la distribution d'une paire de statistique $(\mathsf{aire, poidscheminbondissant})$ sur les polyominos parallélogrammes similaire à celle de Haglund définissant les polynômes de $q,t$-Catalan sur les chemins de Dyck. Ainsi nous étendons une paire de statistique de Egge et d'autres à l'ensemble des polynominos parallélogrammes. Cela répond à l'une de leur question sur des généralistations à d'autres objets combinatoires. Nous conjecturons que les polynômes de $q,t$-Narayana sont symétriques et discutons des preuves de plusieurs cas particuliers. Nous montrons ègalement une relation avec les polynômes de $q,t$-Catalan en restreignant notre paire de statistique à un sous-ensemble des polyominos parallélogrammes.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

International audience Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the 321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelínek.


10.37236/799 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Martin Klazar

For classes ${\cal O}$ of structures on finite linear orders (permutations, ordered graphs etc.) endowed with containment order $\preceq$ (containment of permutations, subgraph relation etc.), we investigate restrictions on the function $f(n)$ counting objects with size $n$ in a lower ideal in $({\cal O},\preceq)$. We present a framework of edge $P$-colored complete graphs $({\cal C}(P),\preceq)$ which includes many of these situations, and we prove for it two such restrictions (jumps in growth): $f(n)$ is eventually constant or $f(n)\ge n$ for all $n\ge 1$; $f(n)\le n^c$ for all $n\ge 1$ for a constant $c>0$ or $f(n)\ge F_n$ for all $n\ge 1$, $F_n$ being the Fibonacci numbers. This generalizes a fragment of a more detailed theorem of Balogh, Bollobás and Morris on hereditary properties of ordered graphs.


10.37236/5629 ◽  
2015 ◽  
Vol 22 (4) ◽  
Author(s):  
Michael Albert ◽  
Mathilde Bouvel

The existence of apparently coincidental equalities (also called Wilf-equivalences) between the enumeration sequences or generating functions of various hereditary classes of combinatorial structures has attracted significant interest. We investigate such coincidences among non-crossing matchings and a variety of other Catalan structures including Dyck paths, 231-avoiding permutations and plane forests. In particular we consider principal subclasses defined by not containing an occurrence of a single given structure. An easily computed equivalence relation among structures is described such that if two structures are equivalent then the associated principal subclasses have the same enumeration sequence. We give an asymptotic estimate of the number of equivalence classes of this relation among structures of size $n$ and show that it is exponentially smaller than the $n^{th}$ Catalan number. In other words these "coincidental" equalities are in fact very common among principal subclasses. Our results also allow us to prove in a unified and bijective manner several known Wilf-equivalences from the literature.


1997 ◽  
Vol 6 (1) ◽  
pp. 87-105 ◽  
Author(s):  
DUDLEY STARK

Assemblies are labelled combinatorial objects that can be decomposed into components. Examples of assemblies include set partitions, permutations and random mappings. In addition, a distribution from population genetics called the Ewens sampling formula may be treated as an assembly. Each assembly has a size n, and the sum of the sizes of the components sums to n. When the uniform distribution is put on all assemblies of size n, the process of component counts is equal in distribution to a process of independent Poisson variables Zi conditioned on the event that a weighted sum of the independent variables is equal to n. Logarithmic assemblies are assemblies characterized by some θ > 0 for which i[ ]Zi → θ. Permutations and random mappings are logarithmic assemblies; set partitions are not a logarithmic assembly. Suppose b = b(n) is a sequence of positive integers for which b/n → β ε (0, 1]. For logarithmic assemblies, the total variation distance db(n) between the laws of the first b coordinates of the component counting process and of the first b coordinates of the independent processes converges to a constant H(β). An explicit formula for H(β) is given for β ε (0, 1] in terms of a limit process which depends only on the parameter θ. Also, it is shown that db(n) → 0 if and only if b/n → 0, generalizing results of Arratia, Barbour and Tavaré for the Ewens sampling formula. Local limit theorems for weighted sums of the Zi are used to prove these results.


Sign in / Sign up

Export Citation Format

Share Document