scholarly journals Patterns in matchings and rook placements

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

International audience Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the 321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelínek.

10.37236/2976 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize $3$-crossings and $3$-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards.We enumerate $312$-avoiding matchings and partitions, obtaining algebraic generating functions, in contrast with the known D-finite generating functions for the $321$-avoiding (i.e., $3$-noncrossing) case. Our approach provides a more direct proof of a formula of Bóna for the number of $1342$-avoiding permutations. We also give a bijective proof of the shape-Wilf-equivalence of the patterns $321$ and $213$ which greatly simplifies existing proofs by Backelin-West-Xin and Jelínek, and provides an extension of work of Gouyou-Beauchamps for matchings with fixed points. Finally, we classify pairs of patterns of length 3 according to shape-Wilf-equivalence, and enumerate matchings and partitions avoiding a pair in most of the resulting equivalence classes.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

International audience In their paper on Wilf-equivalence for singleton classes, Backelin, West, and Xin introduced a transformation $\phi^*$, defined by an iterative process and operating on (all) full rook placements on Ferrers boards. Bousquet-Mélou and Steingrimsson proved the analogue of the main result of Backelin, West, and Xin in the context of involutions, and in so doing they needed to prove that $\phi^*$ commutes with the operation of taking inverses. The proof of this commutation result was long and difficult, and Bousquet-Mélou and Steingrimsson asked if $\phi^*$ might be reformulated in such a way as to make this result obvious. In the present paper we provide such a reformulation of $\phi^*$, by modifying the growth diagram algorithm of Fomin. This also answers a question of Krattenthaler, who noted that a bijection defined by the unmodified Fomin algorithm obviously commutes with inverses, and asked what the connection is between this bijection and $\phi^*$. Dans leur article sur l'équivalence de Wilf pour les classes de singletons, Backelin, West et Xin ont introduit une transformation $\phi^*$, définie par un processus itératif et opérant sur (tous) les placements complets de tours sur un plateau de Ferrers. Bousquet-Melou et Steingrimsson ont démontré l'analogue du résultat principal de Backelin, West et Xin dans le contexte d'involutions, et pour ce faire ont eu besoin de démontrer que $\phi^*$ commute avec l'opération inverse. La preuve de cette commutativité est longue et difficile, et Bousquet-Melou et Steingrômsson se demandèrent s'il n'était pas possible de reformuler $\phi^*$ de sorte que le resultat devienne évident. Dans le présent article, nous proposons une telle reformulation de $\phi^*$ en modifiant l'algorithme de croissance de diagramme de Fomin. Cette reformulation répond également à une question de Krattenthaler, qui, remarquant qu'une bijection définie par l'algorithme de Fomin non modifié commute évidemment avec l'opération inverse, se demanda quel était le rapport entre cette bijection et $\phi^*$.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Lily Yen

International audience The equidistribution of many crossing and nesting statistics exists in several combinatorial objects like matchings, set partitions, permutations, and embedded labelled graphs. The involutions switching nesting and crossing numbers for set partitions given by Krattenthaler, also by Chen, Deng, Du, Stanley, and Yan, and for permutations given by Burrill, Mishna, and Post involved passing through tableau-like objects. Recently, Chen and Guo for matchings, and Marberg for set partitions extended the result to coloured arc annotated diagrams. We prove that symmetric joint distribution continues to hold for arc-coloured permutations. As in Marberg's recent work, but through a different interpretation, we also conclude that the ordinary generating functions for all j-noncrossing, k-nonnesting, r-coloured permutations according to size n are rational functions. We use the interpretation to automate the generation of these rational series for both noncrossing and nonnesting coloured set partitions and permutations. <begin>otherlanguage*</begin>french L'équidistribution de plusieurs statistiques décrites en termes d'emboitements et de chevauchements d'arcs s'observes dans plusieurs familles d'objects combinatoires, tels que les couplages, partitions d'ensembles, permutations et graphes étiquetés. L'involution échangeant le nombre d'emboitements et de chevauchements dans les partitions d'ensemble due à Krattenthaler, et aussi Chen, Deng, Du, Stanley et Yan, et l'involution similaire dans les permutations due à Burrill, Mishna et Post, requièrent d'utiliser des objets de type tableaux. Récemment, Chen et Guo pour les couplages, et Marberg pour les partitions d'ensembles, ont étendu ces résultats au cas de diagrammes arc-annotés coloriés. Nous démontrons que la propriété d'équidistribution s'observe est aussi vraie dans le cas de permutations aux arcs coloriés. Tout comme dans le travail résent de Marberg, mais via un autre chemin, nous montrons que les séries génératrices ordinaires des permutations r-coloriées ayant au plus j chevauchements et k emboitements, comptées selon la taille n, sont des fonctions rationnelles. Nous décrivons aussi des algorithmes permettant de calculer ces fonctions rationnelles pour les partitions d'ensembles et les permutations coloriées sans emboitement ou sans chevauchement. <end>otherlanguage*</end>


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Kenneth Barrese ◽  
Bruce Sagan

International audience Partition the rows of a board into sets of $m$ rows called levels. An $m$-level rook placement is a subset of squares of the board with no two in the same column or the same level. We construct explicit bijections to prove three theorems about such placements. We start with two bijections between Ferrers boards having the same number of $m$-level rook placements. The first generalizes a map by Foata and Schützenberger and our proof applies to any Ferrers board. The second generalizes work of Loehr and Remmel. This construction only works for a special class of Ferrers boards but also yields a formula for calculating the rook numbers of these boards in terms of elementary symmetric functions. Finally we generalize another result of Loehr and Remmel giving a bijection between boards with the same hit numbers. The second and third bijections involve the Involution Principle of Garsia and Milne. Nous considérons les rangs d’un échiquier partagés en ensembles de $m$ rangs appelés les niveaux. Un $m$-placement des tours est un sous-ensemble des carrés du plateau tel qu’il n’y a pas deux carrés dans la même colonne ou dans le même niveau. Nous construisons deux bijections explicites entre des plateaux de Ferrers ayant les mêmes nombres de $m$-placements. La première est une généralisation d’une fonction de Foata et Schützenberger et notre démonstration est pour n’importe quels plateaux de Ferrers. La deuxième généralise une bijection de Loehr et Remmel. Cette construction marche seulement pour des plateaux particuliers, mais ça donne une formule pour le nombre de $m$-placements en terme des fonctions symétriques élémentaires. Enfin, nous généralisons un autre résultat de Loehr et Remmel donnant une bijection entre deux plateaux ayant les mêmes nombres de coups. Les deux dernières bijections utilisent le Principe des Involutions de Garsia et Milne.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sophie Burrill ◽  
Sergi Elizalde ◽  
Marni Mishna ◽  
Lily Yen

International audience We describe a generating tree approach to the enumeration and exhaustive generation of k-nonnesting set partitions and permutations. Unlike previous work in the literature using the connections of these objects to Young tableaux and restricted lattice walks, our approach deals directly with partition and permutation diagrams. We provide explicit functional equations for the generating functions, with k as a parameter. Nous décrivons une approche, basée sur l'utilisation d'arbres de génération, pour énumération et la génération exhaustive de partitions et permutations sans k-emboîtement. Contrairement aux travaux antérieurs qui reposent sur un lien entre ces objets, tableaux de Young et familles de chemins dans des treillis, notre approche traite directement partitions et diagrammes de permutations. Nous fournissons des équations fonctionnelles explicites pour les séries génératrices, avec k en tant que paramètre.


2009 ◽  
Vol Vol. 11 no. 1 (Combinatorics) ◽  
Author(s):  
Yidong Sun ◽  
Zhiping Wang

Combinatorics International audience The problem of string pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding string patterns of length one and two are obtained. The Lagrange inversion formula is used to obtain the explicit formulas for some special cases. A bijection is also established between generalized non-crossing trees with special string pattern avoidance and little Schr ̈oder paths.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Anders Claesson ◽  
Vít Jelínek ◽  
Eva Jelínková ◽  
Sergey Kitaev

International audience Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A $\textit{partial permutation of length n with k holes}$ is a sequence of symbols $\pi = \pi_1 \pi_2 \cdots \pi_n$ in which each of the symbols from the set $\{1,2,\ldots,n-k\}$ appears exactly once, while the remaining $k$ symbols of $\pi$ are "holes''. We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length $k$ correspond to a Wilf-type equivalence class with respect to partial permutations with $(k-2)$ holes. Lastly, we enumerate the partial permutations of length $n$ with $k$ holes avoiding a given pattern of length at most four, for each $n \geq k \geq 1$. Nous introduisons un concept de permutations partielles. $\textit{Une permutation partielle de longueur n avec k trous}$ est une suite finie de symboles $\pi = \pi_1 \pi_2 \cdots \pi_n$ dans laquelle chaque nombre de l'ensemble $\{1,2,\ldots,n-k\}$ apparaît précisément une fois, tandis que les $k$ autres symboles de $\pi$ sont des "trous''. Nous introduisons l'étude des permutations partielles à motifs exclus et nous montrons que la plupart des résultats sur l'équivalence de Wilf peuvent être généralisés aux permutations partielles avec un nombre arbitraire de trous. De plus, nous montrons que les permutations de Baxter d'une longueur donnée $k$ forment une classe d'équivalence du type Wilf par rapport aux permutations partielles avec $(k-2)$ trous. Enfin, nous présentons l'énumération des permutations partielles de longueur $n$ avec $k$ trous qui évitent un motif de longueur $\ell \leq 4$, pour chaque $n \geq k \geq 1$.


2016 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

In 2000 Klazar introduced a new notion of pattern avoidance in the context of set partitions of $[n]=\{1,\ldots, n\}$. The purpose of the present paper is to undertake a study of the concept of Wilf-equivalence based on Klazar's notion. We determine all Wilf-equivalences for partitions with exactly two blocks, one of which is a singleton block, and we conjecture that, for $n\geq 4$, these are all the Wilf-equivalences except for those arising from complementation. If $\tau$ is a partition of $[k]$ and $\Pi_n(\tau)$ denotes the set of all partitions of $[n]$ that avoid $\tau$, we establish inequalities between $|\Pi_n(\tau_1)|$ and $|\Pi_n(\tau_2)|$ for several choices of $\tau_1$ and $\tau_2$, and we prove that if $\tau_2$ is the partition of $[k]$ with only one block, then $|\Pi_n(\tau_1)| <|\Pi_n(\tau_2)|$ for all $n>k$ and all partitions $\tau_1$ of $[k]$ with exactly two blocks. We conjecture that this result holds for all partitions $\tau_1$ of $[k]$. Finally, we enumerate $\Pi_n(\tau)$ for all partitions $\tau$ of $[4]$. Comment: 21 pages


10.37236/1688 ◽  
2003 ◽  
Vol 9 (2) ◽  
Author(s):  
Aaron D. Jaggard

Let $I_n(\pi)$ denote the number of involutions in the symmetric group ${\cal S}_{n}$ which avoid the permutation $\pi$. We say that two permutations $\alpha,\beta\in{\cal S}_{j}$ may be exchanged if for every $n$, $k$, and ordering $\tau$ of $j+1,\ldots,k$, we have $I_n(\alpha\tau)=I_n(\beta\tau)$. Here we prove that $12$ and $21$ may be exchanged and that $123$ and $321$ may be exchanged. The ability to exchange $123$ and $321$ implies a conjecture of Guibert, thus completing the classification of ${\cal S}_{4}$ with respect to pattern avoidance by involutions; both of these results also have consequences for longer patterns. Pattern avoidance by involutions may be generalized to rook placements on Ferrers boards which satisfy certain symmetry conditions. Here we provide sufficient conditions for the corresponding generalization of the ability to exchange two prefixes and show that these conditions are satisfied by $12$ and $21$ and by $123$ and $321$. Our results and approach parallel work by Babson and West on analogous problems for pattern avoidance by general (not necessarily involutive) permutations, with some modifications required by the symmetry of the current problem.


10.37236/713 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Paul Duncan ◽  
Einar Steingrímsson

Ascent sequences are sequences of nonnegative integers with restrictions on the size of each letter, depending on the number of ascents preceding it in the sequence. Ascent sequences have recently been related to $(2+2)$-free posets and various other combinatorial structures. We study pattern avoidance in ascent sequences, giving several results for patterns of lengths up to 4, for Wilf equivalence and for growth rates. We establish bijective connections between pattern avoiding ascent sequences and various other combinatorial objects, in particular with set partitions. We also make a number of conjectures related to all of these aspects.


Sign in / Sign up

Export Citation Format

Share Document