scholarly journals The Minor Crossing Number of Graphs with an Excluded Minor

10.37236/728 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Drago Bokal ◽  
Gašper Fijavž ◽  
David R. Wood

The minor crossing number of a graph $G$ is the minimum crossing number of a graph that contains $G$ as a minor. It is proved that for every graph $H$ there is a constant $c$, such that every graph $G$ with no $H$-minor has minor crossing number at most $c|V(G)|$.


2009 ◽  
Vol 18 (4) ◽  
pp. 583-599 ◽  
Author(s):  
COLIN McDIARMID

A minor-closed class of graphs is addable if each excluded minor is 2-connected. We see that such a classof labelled graphs has smooth growth; and, for the random graphRnsampled uniformly from then-vertex graphs in, the fragment not in the giant component asymptotically has a simple ‘Boltzmann Poisson distribution’. In particular, asn→ ∞ the probability thatRnis connected tends to 1/A(ρ), whereA(x) is the exponential generating function forand ρ is its radius of convergence.



2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Drago Bokal ◽  
Gašper Fijavž ◽  
Bojan Mohar

International audience The minor crossing number of a graph $G$, $rmmcr(G)$, is defined as the minimum crossing number of all graphs that contain $G$ as a minor. We present some basic properties of this new minor-monotone graph invariant. We give estimates on mmcr for some important graph families using the topological structure of graphs satisfying \$mcr(G) ≤k$.





Author(s):  
Robin Thomas

Wagner made the conjecture that given an infinite sequence G1, G2, … of finite graphs there are indices i < j such that Gi is a minor of Gj. (A graph is a minor of another if the first can be obtained by contraction from a subgraph of the second.) The importance of this conjecture is that it yields excluded minor theorems in graph theory, where by an excluded minor theorem we mean a result asserting that a graph possesses a specified property if and only if none of its minors belongs to a finite list of ‘forbidden minors’. A widely known example of an excluded minor theorem is Kuratowski's famous theorem on planar graphs; one of its formulations says that a graph is planar if and only if it has neither K5 nor K3, 3 as a minor. But several other excluded minor theorems have been discovered by now (see e.g. [7–9]).



10.37236/1648 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Petr Hliněný

Knowing the excluded minors for a minor-closed matroid property provides a useful alternative characterization of that property. It has been shown in [R. Hall, J. Oxley, C. Semple, G. Whittle, On Matroids of Branch-Width Three, submitted 2001] that if $M$ is an excluded minor for matroids of branch-width $3$, then $ M$ has at most $14$ elements. We show that there are exactly $10$ such binary matroids $M$ (7 of which are regular), proving a conjecture formulated by Dharmatilake in 1994. We also construct numbers of such ternary and quaternary matroids $ M$, and provide a simple practical algorithm for finding a width-$3$ branch-decomposition of a matroid. The arguments in our paper are computer-assisted — we use a program $MACEK$ [P. Hliněný, The MACEK Program, http://www.mcs.vuw.ac.nz/research/macek, 2002] for structural computations with represented matroids. Unfortunately, it seems to be infeasible to search through all matroids on at most $14$ elements.



10.37236/3994 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Carolyn Chun ◽  
Deborah Chun ◽  
Dillon Mayhew ◽  
Stefan H. M. Van Zwam

If $\mathcal{S}$ is a set of matroids, then the matroid $M$ is $\mathcal{S}$-fragile if, for every element $e\in E(M)$, either $M\backslash e$ or $M/e$ has no minor isomorphic to a member of $\mathcal{S}$. Excluded-minor characterizations often depend, implicitly or explicitly, on understanding classes of fragile matroids. In certain cases, when $\mathcal{M}$ is a minor-closed class of $\mathcal{S}$-fragile matroids, and $N\in \mathcal{M}$, the only members of $\mathcal{M}$ that contain $N$ as a minor are obtained from $N$ by increasing the length of fans. We prove that if this is the case, then we can certify it with a finite case-analysis. The analysis  involves examining matroids that are at most two elements larger than $N$.





1997 ◽  
Vol 2 (4) ◽  
pp. 1-3
Author(s):  
James B. Talmage

Abstract The AMA Guides to the Evaluation of Permanent Impairment, Fourth Edition, uses the Injury Model to rate impairment in people who have experienced back injuries. Injured individuals who have not required surgery can be rated using differentiators. Challenges arise when assessing patients whose injuries have been treated surgically before the patient is rated for impairment. This article discusses five of the most common situations: 1) What is the impairment rating for an individual who has had an injury resulting in sciatica and who has been treated surgically, either with chemonucleolysis or with discectomy? 2) What is the impairment rating for an individual who has a back strain and is operated on without reasonable indications? 3) What is the impairment rating of an individual with sciatica and a foot drop (major anterior tibialis weakness) from L5 root damage? 4) What is the rating for an individual who is injured, has true radiculopathy, undergoes a discectomy, and is rated as Category III but later has another injury and, ultimately, a second disc operation? 5) What is the impairment rating for an older individual who was asymptomatic until a minor strain-type injury but subsequently has neurogenic claudication with severe surgical spinal stenosis on MRI/myelography? [Continued in the September/October 1997 The Guides Newsletter]



2018 ◽  
Vol 23 (4) ◽  
pp. 9-10
Author(s):  
James Talmage ◽  
Jay Blaisdell

Abstract Pelvic fractures are relatively uncommon, and in workers’ compensation most pelvic fractures are the result of an acute, high-impact event such as a fall from a roof or an automobile collision. A person with osteoporosis may sustain a pelvic fracture from a lower-impact injury such as a minor fall. Further, major parts of the bladder, bowel, reproductive organs, nerves, and blood vessels pass through the pelvic ring, and traumatic pelvic fractures that result from a high-impact event often coincide with damaged organs, significant bleeding, and sensory and motor dysfunction. Following are the steps in the rating process: 1) assign the diagnosis and impairment class for the pelvis; 2) assign the functional history, physical examination, and clinical studies grade modifiers; and 3) apply the net adjustment formula. Because pelvic fractures are so uncommon, raters may be less familiar with the rating process for these types of injuries. The diagnosis-based methodology for rating pelvic fractures is consistent with the process used to rate other musculoskeletal impairments. Evaluators must base the rating on reliable data when the patient is at maximum medical impairment and must assess possible impairment from concomitant injuries.



Sign in / Sign up

Export Citation Format

Share Document