scholarly journals New Probabilistic Upper Bounds on the Domination Number of a Graph

10.37236/8345 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nader Jafari Rad

A subset $S$ of vertices of a graph $G$ is a dominating set of $G$ if every vertex in $V(G)-S$ has a neighbor in $S$. The domination number $\gamma(G)$ of $G$ is the minimum cardinality of a dominating set of $G$. In this paper, we obtain new (probabilistic) upper bounds for the domination number of a graph, and improve previous bounds given by Arnautov (1974), Payan (1975), and Caro and Roditty (1985) for any graph, and Harant, Pruchnewski and Voigt (1999) for regular graphs.

2021 ◽  
Vol 40 (3) ◽  
pp. 635-658
Author(s):  
J. John ◽  
V. Sujin Flower

Let G = (V, E) be a connected graph with at least three vertices. A set S ⊆ E(G) is called an edge-to-edge geodetic dominating set of G if S is both an edge-to-edge geodetic set of G and an edge dominating set of G. The edge-to-edge geodetic domination number γgee(G) of G is the minimum cardinality of its edge-to-edge geodetic dominating sets. Some general properties satisfied by this concept are studied. Connected graphs of size m with edge-to-edge geodetic domination number 2 or m or m − 1 are characterized. We proved that if G is a connected graph of size m ≥ 4 and Ḡ is also connected, then 4 ≤ γgee(G) + γgee(Ḡ) ≤ 2m − 2. Moreover we characterized graphs for which the lower and the upper bounds are sharp. It is shown that, for every pair of positive integers a, b with 2 ≤ a ≤ b, there exists a connected graph G with gee(G) = a and γgee(G) = b. Also it is shown that, for every pair of positive integers a and b with 2 < a ≤ b, there exists a connected graph G with γe(G) = a and γgee(G) = b, where γe(G) is the edge domination number of G and gee(G) is the edge-to-edge geodetic number of G.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2101-2110
Author(s):  
Magda Dettlaff ◽  
Saeed Kosary ◽  
Magdalena Lemańska ◽  
Seyed Sheikholeslami

A set X is weakly convex in G if for any two vertices a,b ? X there exists an ab-geodesic such that all of its vertices belong to X. A set X ? V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number ?wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd?wcon (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the weakly convex domination number. In this paper we initiate the study of weakly convex domination subdivision number and establish upper bounds for it.


2021 ◽  
Vol 52 ◽  
Author(s):  
Rana Khoeilar ◽  
Mustapha Chellali ◽  
Hossein Karami ◽  
Seyed Mahmoud Sheikholeslami

For a positive integer $k$, a subset $D$ of vertices in a digraph $\overrightarrow{G}$ is a $k$-dominating set if every vertex not in $D$ has at least $k$ direct predecessors in $D.$ The $k$-domination number is the minimum cardinality among all $k$-dominating sets of $\overrightarrow{G}$. The game $k$-domination number of a simple and undirected graph is defined by the following game. Two players, $\mathcal{A}$ and $\mathcal{D}$, orient the edges of the graph alternately until all edges are oriented. Player $\mathcal{D}$ starts the game, and his goal is to decrease the $k$-domination number of the resulting digraph, while $\mathcal{A}$ is trying to increase it. The game $k$-domination number of the graph $G$ is the $k$-domination number of the directed graph resulting from this game. This is well defined if we suppose that both players follow their optimal strateries. We are mainly interested in the study of the game $2$-domination number, where some upper bounds will be presented. We also establish a Nordhaus-Gaddum bound for the game $2$-domination number of a graph and its complement.


2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{&#x0394;}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2019 ◽  
Vol 11 (01) ◽  
pp. 1950004
Author(s):  
Michael A. Henning ◽  
Nader Jafari Rad

A subset [Formula: see text] of vertices in a hypergraph [Formula: see text] is a transversal if [Formula: see text] has a nonempty intersection with every edge of [Formula: see text]. The transversal number of [Formula: see text] is the minimum size of a transversal in [Formula: see text]. A subset [Formula: see text] of vertices in a graph [Formula: see text] with no isolated vertex, is a total dominating set if every vertex of [Formula: see text] is adjacent to a vertex of [Formula: see text]. The minimum cardinality of a total dominating set in [Formula: see text] is the total domination number of [Formula: see text]. In this paper, we obtain a new (improved) probabilistic upper bound for the transversal number of a hypergraph, and a new (improved) probabilistic upper bound for the total domination number of a graph.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 589
Author(s):  
A. Lakshmi ◽  
K. Ameenal Bibi ◽  
R. Jothilakshmi

A distance - 2 dominating set D V of a graph G is a split distance - 2 dominating set if the induced sub graph <V-D> is disconnected. The split distance - 2 domination number is the minimum cardinality of a split distance - 2 dominating set. In this paper, we defined the notion of split distance - 2 domination in graph. We got many bounds on distance - 2 split domination number. Exact values of this new parameter are obtained for some standard graphs. Nordhaus - Gaddum type results are also obtained for this new parameter.  


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.


2020 ◽  
Vol 26 (1) ◽  
pp. 55-63
Author(s):  
Girish V R ◽  
Usha P

A dominating set D of a graph G = (V;E) is a split dominating set ifthe induced graph hV 􀀀 Di is disconnected. The split domination number s(G)is the minimum cardinality of a split domination set. A graph G is called vertexsplit domination critical if s(G􀀀v) s(G) for every vertex v 2 G. A graph G iscalled edge split domination critical if s(G + e) s(G) for every edge e in G. Inthis paper, whether for some standard graphs are split domination vertex critical ornot are investigated and then characterized 2- ns-critical and 3- ns-critical graphswith respect to the diameter of a graph G with vertex removal. Further, it is shownthat there is no existence of s-critical graph for edge addition.


10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.


Sign in / Sign up

Export Citation Format

Share Document