scholarly journals The Normalized Matching Property in Random and Pseudorandom Bipartite Graphs

10.37236/9148 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Niranjan Balachandran ◽  
Deepanshu Kush

A bipartite graph $G(X,Y,E)$ with vertex partition $(X,Y)$ is said to have the Normalized Matching Property (NMP) if for any subset $S\subseteq X$ we have $\frac{|N(S)|}{|Y|}\geq\frac{|S|}{|X|}$. In this paper, we prove the following results about the Normalized Matching Property.  The random bipartite graph $\mathbb{G}(k,n,p)$ with $|X|=k,|Y|=n$, and $k\leq n<\exp(k)$, and each pair $(x,y)\in X\times Y$ being an edge in $\mathbb{G}$ independently with probability $p$ has $p=\frac{\log n}{k}$ as the threshold for NMP. This generalizes a classic result of Erdős-Rényi on the $\frac{\log n}{n}$ threshold for the existence of a perfect matching in $\mathbb{G}(n,n,p)$. A bipartite graph $G(X,Y)$, with $k=|X|\le |Y|=n$, is said to be Thomason pseudorandom (following A. Thomason (Discrete Math., 1989)) with parameters $(p,\varepsilon)$ if every $x\in X$ has degree at least $pn$ and every pair of distinct $x, x'\in X$ have at most $(1+\varepsilon)p^2n$ common neighbours. We show that Thomason pseudorandom graphs have the following property: Given $\varepsilon>0$ and $n\geq k\gg 0$, there exist functions $f,g$ with $f(x), g(x)\to 0$ as $x\to 0$, and sets $\mathrm{Del}_X\subset X, \  \mathrm{Del}_Y\subset Y$ with $|\mathrm{Del}_X|\leq f(\varepsilon)k,\ |\mathrm{Del}_Y|\leq g(\varepsilon)n$ such that $G(X\setminus \mathrm{Del}_X,Y\setminus \mathrm{Del}_Y)$ has NMP. Enroute, we prove an 'almost' vertex decomposition theorem: Every Thomason pseudorandom bipartite graph $G(X,Y)$ admits - except for a negligible portion of its vertex set - a partition of its vertex set into graphs that are spanned by trees that have NMP, and which arise organically through the Euclidean GCD algorithm. 

2013 ◽  
Vol 22 (5) ◽  
pp. 783-799 ◽  
Author(s):  
GUILLEM PERARNAU ◽  
ORIOL SERRA

A perfect matchingMin an edge-coloured complete bipartite graphKn,nis rainbow if no pair of edges inMhave the same colour. We obtain asymptotic enumeration results for the number of rainbow perfect matchings in terms of the maximum number of occurrences of each colour. We also consider two natural models of random edge-colourings ofKn,nand show that if the number of colours is at leastn, then there is with high probability a rainbow perfect matching. This in particular shows that almost every square matrix of ordernin which every entry appearsntimes has a Latin transversal.


2015 ◽  
Vol 58 (2) ◽  
pp. 320-333
Author(s):  
Aurora Llamas ◽  
Josá Martínez–Bernal

AbstractThe cover product of disjoint graphs G and H with fixed vertex covers C(G) and C(H), is the graphwith vertex set V(G) ∪ V(H) and edge setWe describe the graded Betti numbers of GeH in terms of those of. As applications we obtain: (i) For any positive integer k there exists a connected bipartite graph G such that reg R/I(G) = μS(G) + k, where, I(G) denotes the edge ideal of G, reg R/I(G) is the Castelnuovo–Mumford regularity of R/I(G) and μS(G) is the induced or strong matching number of G; (ii)The graded Betti numbers of the complement of a tree depends only upon its number of vertices; (iii)The h-vector of R/I(G e H) is described in terms of the h-vectors of R/I(G) and R/I(H). Furthermore, in a diòerent direction, we give a recursive formula for the graded Betti numbers of chordal bipartite graphs.


2018 ◽  
Vol 10 (01) ◽  
pp. 1850009
Author(s):  
J. Amjadi ◽  
R. Khoeilar ◽  
M. Soroudi

A signed bad function of [Formula: see text] is a function [Formula: see text] such that [Formula: see text] for every [Formula: see text] where [Formula: see text] is the closed neighborhood of [Formula: see text]. The signed bad number is [Formula: see text]. Ghameshlou et al. [A. N. Ghameshlou, A. Khodkar and S. M. Sheikholeslami, The signed bad numbers in graphs, Discrete Math. Algorithms Appl. 1 (2011) 33–41] proved that for any bipartite graph of order [Formula: see text], [Formula: see text]. But their proof has a gap and the bound is not correct in general. In this note, we modify their proof and show that for any bipartite graph of order [Formula: see text], [Formula: see text], and also we characterize the bipartite graphs attaining this bound.


2021 ◽  
Vol 4 (2) ◽  
pp. 48-51
Author(s):  
Rao Li ◽  

Let \(G = (X, Y; E)\) be a bipartite graph with two vertex partition subsets \(X\) and \(Y\). \(G\) is said to be balanced if \(|X| = |Y|\) and \(G\) is said to be bipancyclic if it contains cycles of every even length from \(4\) to \(|V(G)|\). In this note, we present spectral conditions for the bipancyclic bipartite graphs.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Oleg Duginov

Graph Theory International audience Given a graph and a positive integer k, the biclique vertex-partition problem asks whether the vertex set of the graph can be partitioned into at most k bicliques (connected complete bipartite subgraphs). It is known that this problem is NP-complete for bipartite graphs. In this paper we investigate the computational complexity of this problem in special subclasses of bipartite graphs. We prove that the biclique vertex-partition problem is polynomially solvable for bipartite permutation graphs, bipartite distance-hereditary graphs and remains NP-complete for perfect elimination bipartite graphs and bipartite graphs containing no 4-cycles as induced subgraphs.


10.37236/9489 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Peter Bradshaw

A bipartite graph is called bipancyclic if it contains cycles of every even length from four up to the number of vertices in the graph. A theorem of Schmeichel and Mitchem states that for $n \geqslant 4$, every balanced bipartite graph on $2n$ vertices in which each vertex in one color class has degree greater than $\frac{n}{2}$ and each vertex in the other color class has degree at least $\frac{n}{2}$ is bipancyclic. We prove a generalization of this theorem in the setting of graph transversals. Namely, we show that given a family $\mathcal{G}$ of $2n$ bipartite graphs on a common set $X$ of $2n$ vertices with a common balanced bipartition, if each graph of $\mathcal G$ has minimum degree greater than $\frac{n}{2}$ in one color class and minimum degree at least $\frac{n}{2}$ in the other color class, then there exists a cycle on $X$ of each even length $4 \leqslant \ell \leqslant 2n$ that uses at most one edge from each graph of $\mathcal G$. We also show that given a family $\mathcal G$ of $n$ bipartite graphs on a common set $X$ of $2n$ vertices meeting the same degree conditions, there exists a perfect matching on $X$ that uses exactly one edge from each graph of $\mathcal G$.


2021 ◽  
pp. 2142014
Author(s):  
Xiaoxue Gao ◽  
Shasha Li ◽  
Yan Zhao

For a graph [Formula: see text] and a set [Formula: see text] of size at least [Formula: see text], a path in [Formula: see text] is said to be an [Formula: see text]-path if it connects all vertices of [Formula: see text]. Two [Formula: see text]-paths [Formula: see text] and [Formula: see text] are said to be internally disjoint if [Formula: see text] and [Formula: see text]. Let [Formula: see text] denote the maximum number of internally disjoint [Formula: see text]-paths in [Formula: see text]. The [Formula: see text]-path-connectivity [Formula: see text] of [Formula: see text] is then defined as the minimum [Formula: see text], where [Formula: see text] ranges over all [Formula: see text]-subsets of [Formula: see text]. In [M. Hager, Path-connectivity in graphs, Discrete Math. 59 (1986) 53–59], the [Formula: see text]-path-connectivity of the complete bipartite graph [Formula: see text] was calculated, where [Formula: see text]. But, from his proof, only the case that [Formula: see text] was considered. In this paper, we calculate the situation that [Formula: see text] and complete the result.


2014 ◽  
Vol 6 (2) ◽  
pp. 206-209 ◽  
Author(s):  
Dömötör Pálvölgyi

Abstract We show that the problem of deciding whether the edge set of a bipartite graph can be partitioned into three matchings, of size k1, k2 and k3 is NP-complete, even if one of the matchings is required to be perfect. We also show that the problem of deciding whether the edge set of a simple graph contains a perfect matching and a disjoint matching of size k or not is NP-complete, already for bipartite graphs with maximum degree 3. It also follows from our construction that it is NP-complete to decide whether in a bipartite graph there is a perfect matching and a disjoint matching that covers all vertices whose degree is at least 2.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


Sign in / Sign up

Export Citation Format

Share Document