Protective effect of curcumin against reperfusion injury of mouse renal tubular epithelial cells in vitro

2011 ◽  
Vol 31 (8) ◽  
pp. 874-878
Author(s):  
Di-ying WU ◽  
Wen-yuan GUO ◽  
Hao-jie ZHANG ◽  
Xu-dong CAI ◽  
Peng-jie XU
2008 ◽  
Vol 295 (6) ◽  
pp. F1689-F1695 ◽  
Author(s):  
A. C. Breggia ◽  
D. M. Wojchowski ◽  
J. Himmelfarb

Erythropoietin has emerged as a potential therapy for the treatment of ischemic tissue injury. In erythroid cells, the JAK2/Y343/STAT5 signaling axis has been shown to be necessary for stress but not steady-state erythropoiesis. The requirement for STAT5 activation in erythropoietin-mediated protection from ischemic injury has not been well-studied. To answer this question, we induced reproducible necrotic ischemic injury in primary mouse renal tubular epithelial cells (RTEC) in vitro. Using RTEC from erythropoietin receptor mutant mice with differential STAT5 signaling capabilities, we demonstrated first, that EPO administration either before or during injury significantly protects against mild-moderate but not severe necrotic cell death; and second, the JAK2/Y343/STAT5 signaling axis is required for protection against ischemic injury in primary mouse RTEC. In addition, we identified Pim-3, a prosurvival STAT5 target gene, as responsive to EPO in the noninjured kidney both in vitro and in vivo.


2012 ◽  
Vol 302 (8) ◽  
pp. F1055-F1062 ◽  
Author(s):  
Farah Tasnim ◽  
Daniele Zink

Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jinyun Pu ◽  
Yu Zhang ◽  
Jianhua Zhou

Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is a vital mechanism of renal fibrosis. Mounting evidence suggests that miR-200a expression decreases in tubular epithelial cells in unilateral ureteral obstruction (UUO) rats. Moreover, it has been demonstrated that Huai Qi Huang (HQH) can ameliorate tubulointerstitial damage in adriamycin nephrosis and delay kidney dysfunction in primary glomerular disease. However, the effect of HQH on EMT of tubular epithelial cells in UUO rats and its molecular mechanism is unclear. In order to explore the effect of HQH on EMT and its molecular mechanism in renal fibrosis,in vitroandin vivoexperiments were performed in our study. Our results showed that HQH increased miR-200a expression in UUO rats and in TGF-β1 stimulated NRK-52E cells. Meanwhile, HQH decreased ZEB1 and ZEB2 (the transcriptional repressors of E-cadherin),α-SMA expression in renal tubular epithelial cellsin vitroandin vivo. Furthermore, we found that HQH protected kidney from fibrosis in UUO rats. The results demonstrated that HQH regulated miR-200a/ZEBs pathway and inhibited EMT process, which may be a mechanism of protecting effect on tubular cells in renal fibrosis.


1991 ◽  
Vol 284 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Lesley A. Beavan ◽  
Frank A. Carone ◽  
Sakie Nakamura ◽  
J.Kay Jones ◽  
James F. Reindel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document