Constructing Discrete Surface Through Given Discrete Geodesics

2019 ◽  
Vol 31 (5) ◽  
pp. 736
Author(s):  
Huahao Shou ◽  
Xiaojing Wu ◽  
Lin Yang
Keyword(s):  
Author(s):  
Andreas Apostolatos ◽  
Altuğ Emiroğlu ◽  
Shahrokh Shayegan ◽  
Fabien Péan ◽  
Kai-Uwe Bletzinger ◽  
...  

AbstractIn this study the isogeometric B-Rep mortar-based mapping method for geometry models stemming directly from Computer-Aided Design (CAD) is systematically augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus, the newly proposed methodology is applied to geometries described by their Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational B-Spline (NURBS) discretizations as standard in modern CAD. The proposed isogeometric B-Rep mortar-based mapping method is herein extended for the transformation of fields between a B-Rep model and a low order discrete surface representation of the geometry which typically results when the Finite Volume Method (FVM) or the Finite Element Method (FEM) are employed. This enables the transformation of such fields as tractions and displacements along the FSI interface when Isogeometric B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the fluid discretization. The latter allows for diverse discretization schemes between the structural and the fluid Boundary Value Problem (BVP), taking into consideration the special properties of each BVP separately while the constraints along the FSI interface are satisfied in an iterative manner within partitioned FSI. The proposed methodology can be exploited in FSI problems with an IBRA structural discretization or to FSI problems with a standard FEM structural discretization in the frame of the Exact Coupling Layer (ECL) where the interface fields are smoothed using the underlying B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis functions offer. All new developments are systematically investigated and demonstrated by FSI problems with lightweight structures whereby the underlying geometric parametrizations are directly taken from real-world CAD models, thus extending IBRA into coupled problems of the FSI type.


2020 ◽  
Vol 147 ◽  
pp. 106269
Author(s):  
Jinbo Jiang ◽  
Wenjing Zhao ◽  
Xudong Peng ◽  
Jiyun Li

Aerospace ◽  
2019 ◽  
Vol 6 (11) ◽  
pp. 122
Author(s):  
Francesco Nicassio ◽  
Gennaro Scarselli

Morphing structures suitable for unmanned aerial vehicles (UAVs) have been investigated for several years. This paper presents a novel lightweight, morphing concept based on the exploitation of the “lever effect” of a bistable composite plate that can be integrated in an UAV horizontal tail. Flight dynamics equations are solved in Simulink environment, thus being able to simulate and compare different flight conditions with conventional and bistable command surfaces. Subsequently, bistable plates are built by using composite materials, paying particular attention to dimensions, asymmetric stacking sequence and total thickness needed to achieve bistability. NACA0011 airfoil is chosen for proving this concept. Wind tunnel tests demonstrate that the discrete surface is capable of withstanding the aerodynamic pressure. A remotely piloted vehicle is employed to test the discrete horizontal tail command during the take-off. The results show that, choosing a proper configuration of constraints, stacking sequence and aspect ratio for the bistable laminate, it is possible to tailor the snap-through mechanism. The proposed concept appears lighter and increases aerodynamic efficiency when compared to conventional UAV command surfaces.


2006 ◽  
Vol 31 (15) ◽  
pp. 2332 ◽  
Author(s):  
Mario I. Molina ◽  
Ivan L. Garanovich ◽  
Andrey A. Sukhorukov ◽  
Yuri S. Kivshar

2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Adam R. Updegrove ◽  
Shawn C. Shadden ◽  
Nathan M. Wilson

Image-based modeling is an active and growing area of biomedical research that utilizes medical imaging to create patient-specific simulations of physiological function. Under this paradigm, anatomical structures are segmented from a volumetric image, creating a geometric model that serves as a computational domain for physics-based modeling. A common application is the segmentation of cardiovascular structures to numerically model blood flow or tissue mechanics. The segmentation of medical image data typically results in a discrete boundary representation (surface mesh) of the segmented structure. However, it is often desirable to have an analytic representation of the model, which facilitates systematic manipulation. For example, the model then becomes easier to union with a medical device, or the geometry can be virtually altered to test or optimize a surgery. Furthermore, to employ increasingly popular isogeometric analysis (IGA) methods, the parameterization must be analysis suitable. Converting a discrete surface model to an analysis-suitable model remains a challenge, especially for complex branched structures commonly encountered in cardiovascular modeling. To address this challenge, we present a framework to convert discrete surface models of vascular geometries derived from medical image data into analysis-suitable nonuniform rational B-splines (NURBS) representation. This is achieved by decomposing the vascular geometry into a polycube structure that can be used to form a globally valid parameterization. We provide several practical examples and demonstrate the accuracy of the methods by quantifying the fidelity of the parameterization with respect to the input geometry.


Sign in / Sign up

Export Citation Format

Share Document