Adsorption and desorption properties of three types of agricultural humic acids for K+

2011 ◽  
Vol 37 (1) ◽  
pp. 103-106
Author(s):  
Jian-xin LUO ◽  
Wei GUO ◽  
Hui YAN ◽  
Qiong YANG ◽  
Xin-liang DONG ◽  
...  
2008 ◽  
Vol 20 (5) ◽  
pp. 579-584 ◽  
Author(s):  
Qiang WANG ◽  
Shiqiang WEI ◽  
Yuming HUANG ◽  
Jinzhong ZHANG

2017 ◽  
Vol 77 (4) ◽  
pp. 920-930 ◽  
Author(s):  
Yangyang Zhang ◽  
Yilian Li ◽  
Yu Ning ◽  
Danqing Liu ◽  
Peng Tang ◽  
...  

Abstract Humic acids (HAs) were extracted and characterized from three kinds of uranium-enriched lignites from Yunnan province, China. Batch experiments were used to study the adsorption and desorption behavior of uranium (VI) onto these HAs and a commercial HA. The results showed that the optimum pH level at which all the HAs adsorbed uranium(VI) ranged from 5 to 8. The high uranium content of the HAs was released into the solution at the pH values between 1 and 3; when the HA dosage was 2.5 g L−1, the maximum concentration of uranium was 44.14 μg L−1. This shows that HAs derived from uranium-enriched lignites may present a potential environmental risk when used in acidic conditions. The experimental data were found to comply with the pseudo-second-order kinetic model, and the adsorption isotherms fit the Langmuir and Freundlich models well. The desorption experiments revealed that the sorption mechanism was controlled by the complex interactions between the organic ligands of the HAs and uranium(VI). The uranium present in the HAs may not affect the adsorption capacity of the uranium(VI), but the carboxylic and phenolic hydroxyl groups in the HAs play a significant role in controlling the adsorption capacity.


2020 ◽  
pp. 15-27

In order to study the effect of phosphogypsum and humic acids in the kinetic release of salt from salt-affected soil, a laboratory experiment was conducted in which columns made from solid polyethylene were 60.0 cm high and 7.1 cm in diameter. The columns were filled with soil so that the depth of the soil was 30 cm inside the column, the experiment included two factors, the first factor was phosphogypsum and was added at levels 0, 5, 10 and 15 tons ha-1 and the second-factor humic acids were added at levels 0, 50, 100 and 150 kg ha-1 by mixing them with the first 5 cm of column soil and one repeater per treatment. The continuous leaching method was used by using an electrolytic well water 2.72 dS m-1. Collect the leachate daily and continue the leaching process until the arrival of the electrical conductivity of the filtration of leaching up to 3-5 dS m-1. The electrical conductivity and the concentration of positive dissolved ions (Ca, Mg, Na) were estimated in leachate and the sodium adsorption ratio (SAR) was calculated. The results showed that the best equation for describing release kinetics of the salts and sodium adsorption ratio in soil over time is the diffusion equation. Increasing the level of addition of phosphogypsum and humic acids increased the constant release velocity (K) of salts and the sodium adsorption ratio. The interaction between phosphogypsum and humic acids was also affected by the constant release velocity of salts and the sodium adsorption ratio. The constant release velocity (K) of the salts and the sodium adsorption ratio at any level of addition of phosphogypsum increased with the addition of humic acids. The highest salts release rate was 216.57 in PG3HA3, while the lowest rate was 149.48 in PG0HA0. The highest release rate of sodium adsorption ratio was 206.09 in PG3HA3, while the lowest rate was 117.23 in PG0HA0.


2011 ◽  
Vol 47 (1) ◽  
pp. 97-104
Author(s):  
V. A. Medved' ◽  
P. D. Klochenko ◽  
O. V. Vasilenko ◽  
T. A. Vasilchuk
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document