Genetic Analysis of Cold Tolerance at the Seedling Stage in Dongxiang Wild Rice (Oryza rufipogon)

2011 ◽  
Vol 46 (1) ◽  
pp. 21-27
Author(s):  
Jian Shuirong ◽  
Wan Yong ◽  
Luo Xiangdong ◽  
Fang Jun ◽  
Chu Chengcai ◽  
...  
2018 ◽  
Vol 54 (No. 2) ◽  
pp. 59-64 ◽  
Author(s):  
S. Yu ◽  
M. LI ◽  
Y. Xiao ◽  
D. Huang ◽  
D. Chen

Tolerance to low temperature is an important factor affecting the growth and development of rice (Oryza sativa L.) at an early growing season in the temperate region, and at high altitudes of tropical regions. In this study, a backcross inbred line (BIL) population derived from an interspecific cross between Xieqingzao B (O. sativa L.) and an accession of Dongxiang wild rice (O. rufipogon Griff.) was used to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage. Seedlings were treated with a temperature of 6°C for 2 days and seedling mortality was measured for QTL mapping. QTL analysis was performed on the whole BIL population and on one subpopulation that showed Xieqingzao B homozygous at QTL detected in the whole population. One major QTL, qSCT8, and one QTL, qSCT4.3, with smaller effect was found in the whole population. The QTLs qSCT8 and qSCT4.3 were mapped on chromosome 8 and 4, explaining 60.96% and 8.83% of the phenotypic variance, respectively. In the subpopulation, three QTLs, qSCT4.1, qSCT4.2 and qSCT12, accounting for 56.22%, 57.62% and 53.09% of the phenotypic variance, respectively, were detected on chromosome 4 and 12. At all five loci, the alleles introduced from the Dongxiang wild rice were effective in decreasing seedling mortality. Our results provide a basis for fine mapping and cloning of QTLs associated with cold tolerance, and the markers linked with QTLs could be used to improve the cold tolerance of rice varieties by marker-assisted selection.


Rice Science ◽  
2008 ◽  
Vol 15 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Xiao-rong CHEN ◽  
Kong-song YANG ◽  
Jun-ru FU ◽  
Chang-lan ZHU ◽  
Xiao-song PENG ◽  
...  

2009 ◽  
Vol 57 (4) ◽  
pp. 597-609 ◽  
Author(s):  
J. Xie ◽  
H. A. Agrama ◽  
D. Kong ◽  
J. Zhuang ◽  
B. Hu ◽  
...  

2016 ◽  
Vol 15 (6) ◽  
pp. 566-569
Author(s):  
Jiankun Xie ◽  
Meng Zhang ◽  
Jia Sun ◽  
Fantao Zhang

AbstractDongxiang wild rice (Oryza rufipogon, DXWR), one of the species of common wild rice, is regarded as an important genetic resource for the improvement of cultivated rice (Oryza sativa). Molecular markers are reliable tools that can greatly accelerate the breeding process and have been widely used in various species. In the present study, a total of 3681 genic simple sequence repeat (SSR) markers were developed for DXWR based on transcriptome sequencing technology. Additionally, 25 primer pairs were randomly selected and synthesized for the verification. Among them, 18 (72%) primer pairs were successfully amplified in PCR amplification with genomic DNA of DXWR and also had abundant polymorphisms between DXWR and cultivated rice. These novel genic SSR markers will enrich current genomic resources for DXWR, and provide an effective tool for genetic study and molecular marker assisted breeding for this valuable and endangered germplasm.


Author(s):  
Wanling Yang ◽  
Yuanwei Fan ◽  
Yong Chen ◽  
Gumu Ding ◽  
Hu Liu ◽  
...  

AbstractDongxiang wild rice (Oryza rufipogon Griff., DXWR) is the northernmost distributed common wild rice found in the world. It contains a large number of agronomically valuable genes, which makes it a natural gene pool for rice breeding. Molecular markers, especially simple repeat sequence (SSR) markers, play important roles in crop breeding. Although a large number of SSR markers have been developed, most of them are derived from the genome coding sequences, rarely from non-coding sequences. Meanwhile, long non-coding RNAs (lncRNAs), which are derived from the transcription of non-coding sequences, play vital roles in plant growth, development and stress responses. In this study, 1878 SSR loci were detected from the lncRNA sequences of DXWR, and 1258 lncRNA-derived-SSR markers were developed on the genome-wide scale. To verify the validity and applicability of these markers, 72 pairs of primers were randomly selected to test 44 rice materials. The results showed that 42 (58.33%) pairs of primers have abundant polymorphism among these rice materials; the polymorphism information content (PIC) values ranged from 0.04 to 0.87 with an average of 0.50; the genetic diversity index of SSR loci varied from 0.04 to 0.88 with an average of 0.56; and the number of alleles per marker ranged from 2 to 11 with an average of 4.36. Thus, we concluded that these lncRNA-derived-SSR markers are a very useful source for future basic and applied research, including genetic diversity analysis, QTL mapping, and molecular breeding programs, to make good use of the elite lncRNA genes from DXWR.


Sign in / Sign up

Export Citation Format

Share Document