Genetic Analysis on Characteristics to Measure Drought Resistance Using Dongxiang Wild Rice (Oryza rufupogon Griff.) and Its Derived Backcross Inbred Lines Population at Seedling Stage

2011 ◽  
Vol 10 (11) ◽  
pp. 1653-1664 ◽  
Author(s):  
Biao-lin HU ◽  
Xue-qin FU ◽  
Tao ZHANG ◽  
Yong WAN ◽  
Xia LI ◽  
...  
2011 ◽  
Vol 46 (1) ◽  
pp. 21-27
Author(s):  
Jian Shuirong ◽  
Wan Yong ◽  
Luo Xiangdong ◽  
Fang Jun ◽  
Chu Chengcai ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Yaling Chen ◽  
Wenxue Huang ◽  
Fantao Zhang ◽  
Xiangdong Luo ◽  
Biaolin Hu ◽  
...  

Dongxiang common wild rice is a precious rice germplasm resource for the study and improvement of salt tolerance in rice.The metabolism profile of Dongxiang wild rice (DXWR) under salinity was determined by high performance liquid chromatography-mass spectrometry (HPLC-MS) to find differential metabolites and screen potential biomarkers for salt-tolerant rice varieties. A global untargeted metabolism analysis showed 4,878 metabolites accumulated in seedlings of Dongxiang wild rice. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) results provided a clear metabolism discrimination between DXWR under control and DXWR under salinity. A total of 90 metabolites were significantly changed (49 upregulated and 41 downregulated) under salinity, of which the largest increase was in DL-2-Aminoadipic acid (27.08-fold) and the largest decrease was in L-Carnitine (0.014-fold). Amino acids and nuclear glycosides were mainly upregulated, while carbohydrates and organic acids were mainly downregulated in the salt-treated group. Among the top 10 upregulated metabolites, five kinds of differential metabolites were amino acids. According to the survival rates of the seedlings under salinity, we selected three backcross inbred lines of DXWR with survival rates above 80% as salt-tolerant progenies (pro-DS) and three backcross inbred lines with survival rates below 10% as non-salt-tolerant progenies (pro-NDS) for an amino acid change analysis. This analysis found that the change in L-Asparagine (2.59-fold) was the biggest between pro-DS and pro-NDS under salinity, revealing that the contents of L-Asparagine may be one of the indices we can use to evaluate the salt tolerance of rice varieties.


2018 ◽  
Vol 54 (No. 2) ◽  
pp. 59-64 ◽  
Author(s):  
S. Yu ◽  
M. LI ◽  
Y. Xiao ◽  
D. Huang ◽  
D. Chen

Tolerance to low temperature is an important factor affecting the growth and development of rice (Oryza sativa L.) at an early growing season in the temperate region, and at high altitudes of tropical regions. In this study, a backcross inbred line (BIL) population derived from an interspecific cross between Xieqingzao B (O. sativa L.) and an accession of Dongxiang wild rice (O. rufipogon Griff.) was used to identify quantitative trait loci (QTLs) associated with cold tolerance at the seedling stage. Seedlings were treated with a temperature of 6°C for 2 days and seedling mortality was measured for QTL mapping. QTL analysis was performed on the whole BIL population and on one subpopulation that showed Xieqingzao B homozygous at QTL detected in the whole population. One major QTL, qSCT8, and one QTL, qSCT4.3, with smaller effect was found in the whole population. The QTLs qSCT8 and qSCT4.3 were mapped on chromosome 8 and 4, explaining 60.96% and 8.83% of the phenotypic variance, respectively. In the subpopulation, three QTLs, qSCT4.1, qSCT4.2 and qSCT12, accounting for 56.22%, 57.62% and 53.09% of the phenotypic variance, respectively, were detected on chromosome 4 and 12. At all five loci, the alleles introduced from the Dongxiang wild rice were effective in decreasing seedling mortality. Our results provide a basis for fine mapping and cloning of QTLs associated with cold tolerance, and the markers linked with QTLs could be used to improve the cold tolerance of rice varieties by marker-assisted selection.


Rice Science ◽  
2008 ◽  
Vol 15 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Xiao-rong CHEN ◽  
Kong-song YANG ◽  
Jun-ru FU ◽  
Chang-lan ZHU ◽  
Xiao-song PENG ◽  
...  

2017 ◽  
Vol 37 (3) ◽  
Author(s):  
Fantao Zhang ◽  
Yi Zhou ◽  
Meng Zhang ◽  
Xiangdong Luo ◽  
Jiankun Xie

Drought is a serious constraint to rice production throughout the world, and although Dongxiang wild rice (Oryza rufipogon, DXWR) possesses a high degree of drought resistance, the underlying mechanisms of this trait remains unclear. In the present study, cDNA libraries were constructed from the leaf and root tissues of drought-stressed and untreated DXWR seedlings, and transcriptome sequencing was performed with the goal of elucidating the molecular mechanisms involved in drought-stress response. The results indicated that 11231 transcripts were differentially expressed in the leaves (4040 up-regulated and 7191 down-regulated) and 7025 transcripts were differentially expressed in the roots (3097 up-regulated and 3928 down-regulated). Among these differentially expressed genes (DEGs), the detection of many transcriptional factors and functional genes demonstrated that multiple regulatory pathways were involved in drought resistance. Meanwhile, the DEGs were also annotated with gene ontology (GO) terms and key pathways via functional classification and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway mapping, respectively. A set of the most interesting candidate genes was then identified by combining the DEGs with previously identified drought-resistant quantitative trait loci (QTL). The present work provides abundant genomic information for functional dissection of the drought resistance of DXWR, and findings will further help the current understanding of the biological regulatory mechanisms of drought resistance in plants and facilitate the breeding of new drought-resistant rice cultivars.


2019 ◽  
Vol 45 (2) ◽  
pp. 316 ◽  
Author(s):  
Xiao-Ding MA ◽  
Jiang-Hong TANG ◽  
Jia-Ni ZHANG ◽  
Di CUI ◽  
Hui LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document