scholarly journals Comparison of Chondral Defects Repair with In Vitro and In Vivo Differentiated Mesenchymal Stem Cells

2007 ◽  
Vol 16 (8) ◽  
pp. 823-832 ◽  
Author(s):  
Hongbin Fan ◽  
Haifeng Liu ◽  
Rui Zhu ◽  
Xusheng Li ◽  
Yuming Cui ◽  
...  

The purpose of this study was to compare chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells (MSCs). A novel PLGA-gelatin/chondroitin/hyaluronate (PLGA-GCH) hybrid scaffold with transforming growth factor-β1 (TGF-β1)-impregnated microspheres (MS-TGF) was fabricated to mimic the extracellular matrix. MS-TGF showed an initial burst release (22.5%) and a subsequent moderate one that achieved 85.1% on day 21. MSCs seeded on PLGA-GCH/MS-TGF or PLGA-GCH were incubated in vitro and showed that PLGA-GCH/MS-TGF significantly augmented proliferation of MSCs and glycosaminoglycan synthesis compared with PLGA-GCH. Then MSCs seeded on PLGA-GCH/MS-TGF were implanted and differentiated in vivo to repair chondral defect on the right knee of rabbit (in vivo differentiation repair group), while the contralateral defect was repaired with in vitro differentiated MSCs seeded on PLGA-GCH (in vitro differentiation repair group). The histology observation demonstrated that in vivo differentiation repair showed better chondrocyte morphology, integration, and subchondral bone formation compared with in vitro differentiation repair 12 and 24 weeks postoperatively, although there was no significant difference after 6 weeks. The histology grading score comparison also demonstrated the same results. The present study implies that in vivo differentiation induced by PLGA-GCH/MS-TGF and the host microenviroment could keep chondral phenotype and enhance repair. It might serve as another way to induce and expand seed cells in cartilage tissue engineering.

Author(s):  
Natalia Martins ◽  
Alessandra Arcoverde ◽  
Juliana Lott ◽  
Viviane Silva ◽  
Dawidson Gomes ◽  
...  

2006 ◽  
Vol 142 (4) ◽  
pp. 503-506 ◽  
Author(s):  
P. V. Kruglyakov ◽  
I. B. Sokolova ◽  
N. N. Zin’kova ◽  
S. K. Viide ◽  
G. V. Aleksandrov ◽  
...  

2014 ◽  
Vol 14 (04) ◽  
pp. 1450054 ◽  
Author(s):  
FARZANEH SAFSHEKAN ◽  
MOHAMMAD TAFAZZOLI SHADPOUR ◽  
MOHAMMAD ALI SHOKRGOZAR ◽  
NOOSHIN HAGHIGHIPOUR ◽  
SEYED HAMED ALAVI

Cartilage tissue engineering is a promising treatment for damaged or diseased cartilage that requires thorough understanding of influential parameters involved in chondrogenic differentiation. This study examined how 4-h application of cyclic hydrostatic pressure (CHP) of 5 MPa at 0.5 Hz could modulate chondroinduction of human adipose-derived mesenchymal stem cells (hAMSCs) in vitro. Four groups were examined including a negative control group, a chemical group treated by growth factor for 10 days, a mechanical group exposed to 4-h loading on the 10th day of pellet culture without any chondrogenic stimulator, and finally a chemical-mechanical group subjected to both growth factor and loading. Application of cyclic hydrostatic pressure increased the expression of chondrogenic genes, including sox9 and aggrecan to higher levels than those of the chemical group. This study indicates that cyclic hydrostatic pressure initiates and enhances the chondrogenic differentiation of mesenchymal stem cells with or without growth factors in vitro and confirms the important role of hydrostatic pressure during chondrogenesis in vivo.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Baixiang Cheng ◽  
Teng Tu ◽  
Xiao Shi ◽  
Yanzheng Liu ◽  
Ying Zhao ◽  
...  

Abstract Background Although tissue-engineered cartilage has been broadly studied, complete integration of regenerated cartilage with residual cartilage is still difficult for the inferior mechanical and biochemical feature of neocartilage. Chondrogenesis of mesenchymal stem cells can be induced by biophysical and biochemical factors. Methods In this study, autologous platelet-rich fibrin (PRF) membrane was used as a growth factor-rich scaffold that may facilitate differentiation of the transplanted bone marrow mesenchymal stem cells (BMSCs). At the same time, hydrostatic pressure was adopted for pre-adjustment of the seed cells before transplantation that may promote the mechanical flexibility of neocartilage. Results An in vitro study showed that the feasible hydrostatic pressure stimulation substantially promoted the chondrogenic potential of in vitro-cultured BMSC/PRF construct. In vivo results revealed that at every time point, the newborn tissues were the most favorable in the pressure-pretreated BMSC/PRF transplant group. Besides, the transplantation of feasible hydrostatic pressure-pretreated construct by BMSC sheet fragments and PRF granules could obviously improve the integration between the regenerated cartilage and host cartilage milieu, and thereby achieve boundaryless repair between the neocartilage and residual host cartilage tissue in rabbit temporomandibular joints. It could be concluded that feasible hydrostatic pressure may effectively promote the proliferation and chondrogenic differentiation of BMSCs in a BMSC/PRF construct. Conclusion This newly formed construct with biomechanical flexibility showed a superior capacity for cartilage regeneration by promoting the mechanical properties and integration of neocartilage.


Author(s):  
Minwook Kim ◽  
Isaac E. Erickson ◽  
Jason A. Burdick ◽  
George R. Dodge ◽  
Robert L. Mauck

Articular cartilage has a limited regenerative capacity, and there exist no methodologies to restore structure and function after damage or degeneration. This has focused intense work on cell-based therapies for cartilage repair, with considerable literature demonstrating that chondrocytes in vitro and in vivo can generate cartilage-like tissue replacements. However, use of primary cells is limited by the amount and quality of autologous donor cells and tissue. Multipotential mesenchymal stem cells (MSCs) derived from bone marrow offer an alternative cell source for cartilage tissue engineering. MSCs are easily accessible and expandable in culture, and differentiate towards a chondrocyte-like phenotype with exposure to TGF-β [1]. For example, we have shown that bovine MSCs undergo chondrogenic differentiation and mechanical maturation in agarose, self-assembling peptide, and photocrosslinkable hyaluronic acid (HA) hydrogels [2]. HA hydrogels are particularly advantageous as they are biologically relevant and easily modified to generate a range of hydrogel properties [3]. Indeed, bovine MSCs show a strong dependence of functional outcomes on the macromer density of the HA gel [4]. To further the clinical application of this material, the purpose of this study was to investigate functional chondrogenesis of human MSCs in HA compared to agarose hydrogels. To carry out this study, juvenile bovine and human MSCs were encapsulated and cultured in vitro in HA and agarose hydrogels, and cell viability, biochemical, biomechanical, and histological properties were evaluated over 4 weeks of culture.


2019 ◽  
Vol 13 (01) ◽  
pp. 47-63
Author(s):  
Zahra Azadian ◽  
Masoomeh Shafiei ◽  
Saadi Hosseini ◽  
Javad Kazemi ◽  
Atefeh Alipour ◽  
...  

Various degenerative diseases, traumatic injuries and cancers are almost hard to treat with conventional therapies, causing death or at least permanent disability. The use of multipotent adipose-derived mesenchymal stem cells (ADMSCs) for cell-based therapeutic applications has lately drawn elevated attention primarily due to their potential for differentiation into mesodermal lineages, which can finally be converted into cardiomyocytes to replace present invasive methods used to treat cardiac diseases. However, some reports hindered their clinical implementation due to concerns about efficacy scalability and reproducibility. In this research, we tested the impacts of using multiple natural small molecules and plant extract on the effectiveness of differentiating human ADMSCs into the definitive mesoderm lineage and cardiac progenitors. First, mesenchymal stem cells separated from human adult fat tissue, are propagated and characterized using flow cytometry and appropriate markers for this purpose. Second, passage cells are transferred to 24 well plates and treated with various plant-derived small molecules — primarily one of the most preserved intracellular signals, WNT/[Formula: see text]-catenin stimulators including resveratrol, stilbene, and multiple plant extracts — and assessed their impacts on differentiation into the definitive mesoderm and cardiac lineages. Obtained results revealed that our suggested strategy to differentiation is more viable and safer than present approaches. Taken together, data presented here showed that in vitro differentiation using plant-derived small molecules could be a potential way to improve the effectiveness of their final differentiation into definitive cardiomyocytes for in vivo applications.


2019 ◽  
Vol 98 (9) ◽  
pp. 350-355

Introduction: There is evidence that mesenchymal stem cells (MSCs) could trans-differentiate into the liver cells in vitro and in vivo and thus may be used as an unfailing source for stem cell therapy of liver disease. Combination of MSCs (with or without their differentiation in vitro) and minimally invasive procedures as laparoscopy or Natural Orifice Transluminal Endoscopic Surgery (NOTES) represents a chance for many patients waiting for liver transplantation in vain. Methods: Over 30 millions of autologous MSCs at passage 3 were transplanted via the portal vein in an eight months old miniature pig. The deposition of transplanted cells in liver parenchyma was evaluated histologically and the trans-differential potential of CM-DiI labeled cells was assessed by expression of pig albumin using immunofluorescence. Results: Three weeks after transplantation we detected the labeled cells (solitary, small clusters) in all 10 samples (2 samples from each lobe) but no diffuse distribution in the samples. The localization of CM-DiI+ cells was predominantly observed around the portal triads. We also detected the localization of albumin signal in CM-DiI labeled cells. Conclusion: The study results showed that the autologous MSCs (without additional hepatic differentiation in vitro) transplantation through the portal vein led to successful infiltration of intact miniature pig liver parenchyma with detectable in vivo trans-differentiation. NOTES as well as other newly developed surgical approaches in combination with cell therapy seem to be very promising for the treatment of hepatic diseases in near future.


2018 ◽  
Vol 13 (6) ◽  
pp. 409-422 ◽  
Author(s):  
Alvaro Sierra-Sanchez ◽  
Alexandra Ordonez-Luque ◽  
Olga Espinosa Ibanez ◽  
Antonio Ruiz-Garcia ◽  
Salvador Arias Santiago

Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 781 ◽  
Author(s):  
Paula E. Florian ◽  
Liviu Duta ◽  
Valentina Grumezescu ◽  
Gianina Popescu-Pelin ◽  
Andrei C. Popescu ◽  
...  

This study is focused on the adhesion and differentiation of the human primary mesenchymal stem cells (hMSC) to osteoblasts lineage on biological-derived hydroxyapatite (BHA) and lithium-doped BHA (BHA:LiP) coatings synthesized by Pulsed Laser Deposition. An optimum adhesion of the cells on the surface of BHA:LiP coatings compared to control (uncoated Ti) was demonstrated using immunofluorescence labelling of actin and vinculin, two proteins involved in the initiation of the cell adhesion process. BHA:LiP coatings were also found to favor the differentiation of the hMSC towards an osteoblastic phenotype in the presence of osteoinductive medium, as revealed by the evaluation of osteoblast-specific markers, osteocalcin and alkaline phosphatase. Numerous nodules of mineralization secreted from osteoblast cells grown on the surface of BHA:LiP coatings and a 3D network-like organization of cells interconnected into the extracellular matrix were evidenced. These findings highlight the good biocompatibility of the BHA coatings and demonstrate that the use of lithium as a doping agent results in an enhanced osteointegration potential of the synthesized biomaterials, which might therefore represent viable candidates for future in vivo applications.


Sign in / Sign up

Export Citation Format

Share Document