3D simulations of wave propagation in a poroelastic medium: prediction of slow and fast wave mode in human trabecular bone

Author(s):  
G. Haïat ◽  
F. Padilla ◽  
P. Laugier
2004 ◽  
Vol 11 (5) ◽  
pp. 2473-2479 ◽  
Author(s):  
J. C. Wright ◽  
P. T. Bonoli ◽  
M. Brambilla ◽  
F. Meo ◽  
E. D’Azevedo ◽  
...  

1986 ◽  
Author(s):  
James H. Williams ◽  
Nagem Jr. ◽  
Yeung Raymond J. ◽  
Hubert K.

1991 ◽  
Vol 1 (4) ◽  
pp. 257-261 ◽  
Author(s):  
P. I. Croucher ◽  
N. J. Garrahan ◽  
R. W. E. Mellish ◽  
Juliette E. Compston

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Arnav Sanyal ◽  
Tony M. Keaveny

The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computed tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor.


Author(s):  
Navid Soltanihafshejani ◽  
Thom Bitter ◽  
Dennis Janssen ◽  
Nico Verdonschot

Bone ◽  
2003 ◽  
Vol 33 (3) ◽  
pp. 270-282 ◽  
Author(s):  
Matthew A Rubin ◽  
Iwona Jasiuk ◽  
Jeannette Taylor ◽  
Janet Rubin ◽  
Timothy Ganey ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
Fucai Li ◽  
Haikuo Peng ◽  
Xuewei Sun ◽  
Jinfu Wang ◽  
Guang Meng

A three-dimensional spectral element method (SEM) was developed for analysis of Lamb wave propagation in composite laminates containing a delamination. SEM is more efficient in simulating wave propagation in structures than conventional finite element method (FEM) because of its unique diagonal form of the mass matrix. Three types of composite laminates, namely, unidirectional-ply laminates, cross-ply laminates, and angle-ply laminates are modeled using three-dimensional spectral finite elements. Wave propagation characteristics in intact composite laminates are investigated, and the effectiveness of the method is validated by comparison of the simulation results with analytical solutions based on transfer matrix method. Different Lamb wave mode interactions with delamination are evaluated, and it is demonstrated that symmetric Lamb wave mode may be insensitive to delamination at certain interfaces of laminates while the antisymmetric mode is more suited for identification of delamination in composite structures.


Sign in / Sign up

Export Citation Format

Share Document