Tilianin Promotes the Proliferation and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

2021 ◽  
Vol 20 (2) ◽  
pp. 259-264
Author(s):  
Zhixing Xue ◽  
Jin Yang ◽  
Panfeng Yu

Osteoporosis is a systemic bone disease characterized by a decrease in bone mineral density and mass. To examine the mechanism(s) underlying the pathogenesis of osteoporosis, we have used an in vitro model of osteoporosis induced by exposure to high glucose. Tilianin is a flavonoid glycoside isolated from Dracocephalum moldavica L. that has been reported to exhibit a variety of pharmacologic activities. However, the utility of tilianin in the treatment of osteoporosis remains unexplored. To this end, we have examined the effect of tilianin on bone marrow mesenchymal stem cells exposed to high glucose. Our data revealed that tilianin suppressed apoptosis, promoted osteogenic differentiation, and survival of the bone marrow mesenchymal stem cells in the presence of high glucose. Our data therefore confirmed that tilianin could serve as a promising drug for the treatment of osteoporosis.

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Chanyuan Jin ◽  
Lingfei Jia ◽  
Zhihui Tang ◽  
Yunfei Zheng

Abstract Osteoporosis is a prevalent metabolic bone disease characterized by low bone mineral density and degenerative disorders of bone tissues. Previous studies showed the abnormal osteogenic differentiation of endogenous bone marrow mesenchymal stem cells (BMSCs) contributes to the development of osteoporosis. However, the underlying mechanisms by which BMSCs undergo osteogenic differentiation remain largely unexplored. Recently, long non-coding RNAs have been discovered to play important roles in regulating BMSC osteogenesis. In this study, we first showed MIR22HG, which has been demonstrated to be involved in the progression of several cancer types, played an important role in regulating BMSC osteogenesis. We found the expression of MIR22HG was significantly decreased in mouse BMSCs from the osteoporotic mice and it was upregulated during the osteogenic differentiation of human BMSCs. Overexpression of MIR22HG in human BMSCs enhanced osteogenic differentiation, whereas MIR22HG knockdown inhibited osteogenic differentiation both in vitro and in vivo. Mechanistically, MIR22HG promoted osteogenic differentiation by downregulating phosphatase and tensin homolog (PTEN) and therefore activating AKT signaling. Moreover, we found MIR22HG overexpression promoted osteoclastogenesis of RAW264.7 cells, which indicated that MIR22HG played a significant role in bone metabolism and could be a therapeutic target for osteoporosis and other bone-related diseases.


2020 ◽  
Vol 10 (12) ◽  
pp. 1865-1870
Author(s):  
Yang Ying ◽  
Binghao Zhao ◽  
Wei Qian ◽  
Li Xu

Bone marrow mesenchymal stem cells (BMSCs) have self-renewal potential with multi-directional differentiation. Progranulin prevents bone degradation, inhibits inflammation and protects bone tissue. However, the role of Progranulin in osteoporotic BMSCs is unclear. Osteoporosis (OP) rat models were prepared by ovarian removal and treated with different doses (5 and 10 μM) of Progranulin followed by analysis of BMP-2 level by ELISA, bone mineral density and ALP activity. OP rat BMSCs were isolated and assigned into control group and Progranulin group followed by analysis of Progranulin level by ELISA, cell proliferation by MTT assay, RUNX2 and COL1A1 mRNA level by Real time PCR, and PI3K/Akt/PPARγ signaling protein level by Western blot. Progranulin treatment of OP rats dose-dependently increased BMP-2 expression, bone density and ALP activity. Compared with OP group, there were significant differences (P <0.05). Progranulin expression and BMSCs proliferation was increased, and RUNX2 and COL1A1 mRNA expression was elevated in Progranulin-treated OP group along with increased PI3K/Akt expression and decreased PPARγ protein expression. Compared with OP group, the difference was statistically significant, and the change was more significant with increasing concentration (P <0.05). Progranulin promotes BMSCs osteogenic differentiation and proliferation by regulating PI3K/Akt/PPARγ signaling pathway, which is beneficial for OP rats’ bone synthesis.


Author(s):  
FAM Abo-Aziza ◽  
AA Zaki ◽  
AS Amer ◽  
RA Lotfy

Background: In vitro impact of dihydrotestosterone (DHT) and 17-estradiol (E2) in osteogenic differentiation of castrated rat bone marrow mesenchymal stem cells (rBMMSC) still need to be clarified. Materials and Methods: The viability, proliferation and density of cultured rBMMSC isolated from sham operated (Sham) and castrated (Cast) male rats were evaluated. rBMMSC were cultured with osteogenic differentiating medium (ODM) in the presence of DHT (5,10 nM) and E2 (10,100 nM). Osteogenesis was evaluated by alizarin red staining and measurement of calcium deposition and bone alkaline phosphatase (BALP) activity. Results: Population doubling (PD) of rBMMSC isolated from Cast rats was significantly lower (P<0.05) compared to that isolated from Sham rats. rBMMSC from Cast rats showed low scattered calcified nodule after culturing in ODM and did not cause a significant increase in calcium deposition and B-ALP activity compared to rBMMSCs from Sham rats. Exposure of rBMMSC isolated from Cast rats to DHT (5 nM) or E2 (10 nM) in ODM showed medium scattered calcified nodules with significantly higher (P<0.05) calcium deposition and B-ALP activity. Moreover, exposure of rBMMSC to DHT (10 nM) or E2 (100 nM) showed high scattered calcified nodules with higher (P<0.01) calcium deposition and B-ALP activity Conclusion: These results indicated that the presence of testes might participate in controlling the in vitro proliferation and osteogenic differentiation capacity of rBMMSCs. DHT and E2 can enhance the osteogenic capacity of rBMMSCs in a dose-dependent manner. Based on these observations, optimum usage of DHT and E2 can overcome the limitations of MSCs and advance the therapeutic bone regeneration potential in the future.


2020 ◽  
Vol 167 (6) ◽  
pp. 613-621
Author(s):  
Zhongshu Zhai ◽  
Wanhong Chen ◽  
Qiaosheng Hu ◽  
Xin Wang ◽  
Qing Zhao ◽  
...  

Abstract Diabetic osteoporosis (DOP) is attributed to the aberrant physiological function of bone marrow mesenchymal stem cells (BMSCs) under high glucose (HG) environment. MicroRNAs (miRNAs) are involved in the pathological processes of DOP. We aimed to explore the underlying mechanism of miRNA in DOP. BMSCs were cultured in osteogenic medium with HG to induce osteogenic differentiation, and the interaction between miR-493-5p and ZEB2 was assessed by luciferase assay. Herein, we found miR-493-5p is gradually reduced during osteogenic differentiation in BMSCs. HG treatment inhibits osteogenic differentiation and induces an up-regulation of miR-493-5p leading to reduced level of its downstream target ZEB2. Inhibition of miR-493-5p attenuates HG-induced osteogenic differentiation defects by upregulation of ZEB2. Mechanistically, miR-493-5p/ZEB2 signalling mediates HG-inhibited osteogenic differentiation by inactivation of Wnt/β-catenin signalling. More importantly, knockdown of miR-493-5p therapeutically alleviated the DOP condition in mice. HG prevents BMSCs osteogenic differentiation via up-regulation of miR-493-5p, which results in reduced level of ZEB2 by directly targeting its 3′-untranslated region of mRNA. Thus, miR-493-5p/ZEB2 is a potential therapeutic target and provides novel strategy for the treatment and management of DOP.


Sign in / Sign up

Export Citation Format

Share Document