scholarly journals Exploring relationships between playspaces, pedagogy, and preschoolers’ play-based science and engineering practices

2021 ◽  
Vol 2 (3) ◽  
pp. 314-337 ◽  
Author(s):  
Alison Riley Miller ◽  
Lauren P. Saenz

This manuscript reports the results of a research study exploring the ways in which physical space and teacher pedagogy are related to preschoolers’ engagement with science and engineering practices while at play. Using the Science and Engineering Practices Observation Protocol (SciEPOP), researchers captured children’s engagement with the eight science and engineering practices identified in the Next Generation Science Standards (NGSS). This study explores relationships between specific playspaces, materials, and pedagogical strategies, and children’s patterns of engagement with particular science and engineering practices during free play. There are notable differences in the spaces, materials, and pedagogies children encounter across the four participating preschools, and these differences suggest significant gaps in children’s opportunities to engage in and deepen their enactment of science and engineering practices. The authors present evidence in support of adaptive, personalized strategies for deepening children’s engagement with science through play, and raise questions about equity in early science learning environments that have implications both nationally and internationally for science education research, practice, and policy.

2020 ◽  
Vol 82 (1) ◽  
pp. 43-48
Author(s):  
Cynthia Welsh ◽  
Mary Hedenstrom ◽  
Michele Hollingsworth Koomen

This article illustrates how a seventh-grade life science unit connects to the Science and Engineering Practices and Nature of Science in the Next Generation Science Standards and used science fair projects as a context for students to solve problems and understand how authentic science is done. We outline how student interests drive the development and presentation of science fair projects and discuss each component of a science fair project to reflect the practices and nature of science and how we support students along the way. The article includes images of students and of their work for science fair projects.


Author(s):  
D. Craig Schroeder ◽  
Carl W. Lee ◽  
Margaret J. Mohr-Schroeder

With the adoption and implementation of the Common Core State Standards for Mathematics and the Next Generation Science Standards, teachers are being called upon now more than ever before to regularly utilize and incorporate mathematics, science, and engineering practices in order to deepen students' understanding of the content they are learning, make broader connections to the STEM disciplines, and to ultimately help to strengthen the STEM pipeline. This chapter describes how teachers can use SketchUp as a tool to implement the practices through creative design into their own classrooms. The premise and basics of SketchUp are shared as well as a rich creative design project that develops spatial reasoning in middle grades students.


2016 ◽  
Vol 78 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Mary Carla Curran ◽  
Amber Siler ◽  
Michele B. Sherman

The process of exploration and the methods that scientists use to conduct research are fundamental to science education. In this activity, authentic scientific practices are used to develop hypotheses to explain the natural world. Students observe grass shrimp in aquaria and construct an ethogram, which is a compilation of the observable behaviors an animal exhibits. They then conduct an experiment, just as real scientists would, to determine how changes in the environment alter shrimp behavior. This activity is designed for a fourth-grade science class and allows students to experience the excitement of observing a live organism while learning about scientific inquiry, and also reinforces quantification and graphing skills. “Do You See What I See” covers Next Generation Science Standards and addresses the science and engineering practices of engaging in argument from evidence.


2019 ◽  
Vol 81 (5) ◽  
pp. 340-350
Author(s):  
Courtney Goode

Given that science and engineering practices are a large focus in the Next Generation Science Standards, biology teachers need to find ways to incorporate the engineering design process into their curriculum. To address this need, I present a lesson that allows for student collaboration in designing and developing a solution to a global problem resulting from overfishing and our use of unsustainable fishing practices. This lesson also demonstrates to students that larger, global issues that seem insurmountable to solve can be broken down into smaller, more manageable pieces. My approach involves having students research a problem related to sustainable fishing practices and design a physical model of a solution to combat their specific issue. Peer review is then used in order to help students revise and edit their models during the lesson in response to the peer feedback received. The lesson will culminate in a presentation to the class about the biological, social, and economic ramifications of both their assigned problem and a potential solution.


Sign in / Sign up

Export Citation Format

Share Document