grass shrimp
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 14)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
pp. 000-000
Author(s):  
Samuel D. Rappaport ◽  
Joshua P. Lord

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yingying Zhao ◽  
Xiaochen Zhu ◽  
Ye Jiang ◽  
Zhi Li ◽  
Xin Li ◽  
...  

Abstract Background Chinese grass shrimp (Palaemonetes sinensis) is an important species widely distributed throughout China, which is ecologically relevant and possesses ornamental and economic value. These organisms have experienced a sharp decline in population due to overfishing. Therefore interest in P. sinensis aquaculture has risen in an effort to alleviate fishing pressure on wild populations. Therefore, we investigated the genetic diversity and variation of P. sinensis to verify the accuracy of previous research results, as well as to assess the risk of diversity decline in wild populations and provide data for artificial breeding. Methods Palaemonetes sinensis specimens from seven locations were collected and their genetic variability was assessed based on mitochondrial COI gene segments. DNA sequence polymorphisms for each population were estimated using DNASP 6.12. The demographic history and genetic variation were evaluated using Arlequin 3.11. At last, the pairwise genetic distance (Ds) values and dendrograms were constructed with the MEGA 11 software package. Results Our study obtained sequences from 325 individuals, and 41 haplotypes were identified among the populations. The haplotype diversity (Hd) and nucleotide diversity (π) indices ranged from 0.244 ± 0.083 to 0.790 ± 0.048 and from 0.0004 ± 0.0001 to 0.0028 ± 0.0006, respectively. Haplotype network analyses identified haplotype Hap_1 as a potential maternal ancestral haplotype for the studied populations. AMOVA results indicated that genetic variations mainly occurred within populations (73.07%). Moreover, according to the maximum variation among groups (FCT), analysis of molecular variance using the optimal two-group scheme indicated that the maximum variation occurred among groups (53.36%). Neutrality and mismatch distribution tests suggested that P. sinensis underwent a recent population expansion. Consistent with the SAMOVA analysis and haplotype network analyses, the Ds and FST between the population pairs indicated that the JN population was distinctive from the others. Conclusions Our study conducted a comprehensive characterization of seven wild P. sinensis populations, and our findings elucidated highly significant differences within populations. The JN population was differentiated from the other six populations, as a result of long-term geographical separation. Overall, the present study provided a valuable basis for the management of genetic resources and a better understanding of the ecology and evolution of this species.


Author(s):  
Hongbo Jiang ◽  
Yuwen Chen ◽  
Jie Bao ◽  
Xiaodong Li ◽  
Chengcheng Feng ◽  
...  

Chinese grass shrimp (Palaemonetes sinensis) is an economically important crustacean in Chinese aquaculture. Recently, we found that shrimp in Panjin city were infected with microsporidia, a group of fungi. The hepatopancreas of several infected shrimp showed white turbidity and pathological changes that negatively affected the health and appearance of the shrimp. Histopathology and transmission electron microscopy were used to examine the development of the parasite within its parasitophorous vacuole. Our results indicated that microsporidia developed asynchronously within the same parasitophorous vacuole. The spores were predominantly small, and rod or oval-shaped. The sizes of fresh spores were approximately 3.1 × 2.4 μm and fixed spores were 1.9 × 1.1 μm. The polar filament was isofilar with 5–6 coils and the thickness was 103.2 nm. Merogonial divisions occurred by binary fission and sporogonial division occurred by plasmotomy. The small subunit ribosomal DNA sequence (1295 bp) from the parasite was highly similar to the previously reported parasite Enterocytospora artemiae (99% nucleotide identity, JX915760). Using maximum likelihood to analyze the phylogenetic relationships, we found that this microsporidian should be grouped within Clade IV, an Enterocytospora-like clade, of the Microsporidia phylum. Based on this parasite’s life cycle characteristics, morphology, and small subunit ribosomal DNA sequence, the parasite described here is likely E. artemiae, which has previously only been described in Europe and North America. Thus, this is the first report of E. artemiae both in Asia and economically important shrimp.


2020 ◽  
Vol 228 ◽  
pp. 105651
Author(s):  
Peter B. Key ◽  
Katy W. Chung ◽  
J. Blaine West ◽  
Paul L. Pennington ◽  
Marie E. DeLorenzo

2020 ◽  
Vol 138 ◽  
pp. 227-235 ◽  
Author(s):  
Y Li ◽  
W Xu ◽  
X Li ◽  
Z Han ◽  
R Zhang ◽  
...  

Tachaea chinensis, a parasitic isopod, negatively affects the production of several commercially important shrimp species in China. The mechanism of parasite-host interaction cannot be accurately described by transcriptomic and proteomic approaches individually. Here, comparative metabolite profiling was used to achieve a broad coverage of primary metabolite changes in Chinese grass shrimp Palaemonetes sinensis following T. chinensis parasitization. In total, 66 metabolites were significantly differentially accumulated between the control and infected groups; of these, 19 were upregulated and 47 were downregulated after T. chinensis infection. Moreover, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that 10 pathways were significantly enriched. The protein digestion and absorption pathways were highly enriched, followed by the mineral absorption, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and metabolic metabolism pathways. Parasitization by T. chinensis enhanced the glycolytic pathway and tricarboxylic acid (TCA) cycle in P. sinensis, thereby releasing more energy for swimming, foraging, and evading predation. Glucogenic amino acids such as alanine, histidine, glutamine, and proline were consumed to generate glutamate and enhance the TCA cycle. Nucleotide-related metabolic pathways were downregulated, possibly because T. chinensis can secrete molecules to degrade nucleotides and inhibit hemostasis and inflammatory responses. These results suggest that the isopod parasite can increase the host’s metabolic burden by enhancing the host’s TCA cycle and secreting molecules to degrade host proteins, thereby enabling the parasite to feed on the host and inhibit an inflammatory response. The results will be a valuable contribution to understanding the metabolic responses of crustaceans to isopod parasitism.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yingying Zhao ◽  
Xiaochen Zhu ◽  
Yingdong Li ◽  
Zhibin Han ◽  
Weibin Xu ◽  
...  

AbstractThe mitogenome of Chinese grass shrimp, Palaemonetes sinensis, was determined through Illumina sequencing, and the basic characteristics and gene arrangement were analyzed. The mitogenome of P. sinensis was 15955 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and one control region, with tightly packed. 33 of these genes were encoded on the heavy strand, and the remainders encoded on the light strand. The composition of P. sinensis mitogenome presented a strong A + T bias, which account for 66.7%. All PCGs were initiated by a canonical ATN codon, except nad5, which was initiated by GTG. The termination codons of the PCGs were TAA, TAG and T–. The secondary structures of 22 tRNAs of P. sinensis had the typical clover structure, except of trnS1 owing to the lack of dihydroxyuridine (DHU) arm. Gene order comparison of P. sinensis and previously-sequenced Palaemoninae revealed a unique translocation between trnT and trnP in Macrobrachium. The phylogenetic analyses showed that three Exopalaemon species formed a monophyletic group and then clustered with two Palaemon species and P. sinensis successively whereas Macrobrachium clustered with Palaemon capensis in the other clade.


BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yingying Zhao ◽  
Xiaochen Zhu ◽  
Zhi Li ◽  
Weibin Xu ◽  
Jing Dong ◽  
...  

Abstract Background The Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture. Microsatellite markers are widely used in research of genetic backgrounds since it is considered an important molecular marker for the analyses of genetic diversity and structure. Hence, the aim of this study was to evaluate the genetic diversity and structure of wild P. sinensis populations in China using the polymorphic microsatellite makers from the transcriptome. Results Sixteen polymorphic microsatellite markers were developed for P. sinensis from transcriptome, and analyzed for differences in genetic diversity and structure in multiple wild P. sinensis populations in China. Totally of 319 individual shrimps from seven different populations were genotyped to find that allelic polymorphisms varied in two to thirteen alleles seen in the entire loci. Compared to other populations analyzed, the two populations including LD and SJ showed lower genetic diversity. Both the genetic distance (D) and Wrights fixation index (FST) comparing any two populations also indicated that LD and SJ populations differed from the other five populations. An UPGMA tree analysis showed three main clusters containing SJ, LD and other populations which were also confirmed using STRUCTURE analysis. Conclusion This is the first study where polymorphic microsatellite markers from the transcriptome were used to analyze genetic diversity and structures of different wild P. sinensis populations. All the polymorphic microsatellite makers are believed useful for evaluating the extent of the genetic diversity and population structure of P. sinensis. Compared to the other five populations, the LD and SJ populations exhibited lower genetic diversity, and the genetic structure was differed from the other five populations. Therefore, they needed to be protected against further declines in genetic diversity. The other five populations, LP, LA, LSL, LSY and LSH, are all belonging to Liaohe River Drainage with a relatively high genetic diversity, and hence can be considered as hot spots for in-situ conservation of P. sinensis as well as sources of desirable alleles for breeding values.


Sign in / Sign up

Export Citation Format

Share Document