scholarly journals Cone and seed trait variation in whitebark pine (Pinus albicaulis; Pinaceae) and the potential for phenotypic selection

2009 ◽  
Vol 96 (5) ◽  
pp. 1050-1054 ◽  
Author(s):  
Roberto Garcia ◽  
Adam M. Siepielski ◽  
Craig W. Benkman
Evolution ◽  
1999 ◽  
Vol 53 (1) ◽  
pp. 74-90 ◽  
Author(s):  
Deborah L. Rogers ◽  
Constance I. Millar ◽  
Robert D. Westfall

1990 ◽  
Vol 51 (1-2) ◽  
pp. 73-95 ◽  
Author(s):  
Robert E. Keane ◽  
Stephen F. Arno ◽  
James K. Brown ◽  
Diana F. Tomback

Author(s):  
William Romme ◽  
James Walsh

Whitebark pine (Pinus albicaulis) is a keystone species of upper subalpine ecosystems (Tomback et al. 2001), and is especially important in the high-elevation ecosystems of the northern Rocky Mountains (Arno and Hoff 1989). Its seeds are an essential food source for the endangered grizzly bear (Ursus arctos horribilis), particularly in the autumn, prior to winter denning (Mattson and Jonkel 1990, Mattson and Reinhart 1990, Mattson et al. 1992). In the Greater Yellowstone Ecosystem (GYE), biologists have concluded that the fate of grizzlies is intrinsically linked to the health of the whitebark pine communities found in and around Yellowstone National Park (YNP) (Mattson and Merrill 2002). Over the past century, however, whitebark pine has severely declined throughout much of its range as a result of an introduced fungus, white pine blister rust (Cronartium ribicola) (Hoff and Hagle 1990, Smith and Hoffman 2000, McDonald and Hoff 2001), native pine beetle (Dendroctonus ponderosae) infestations (Bartos and Gibson 1990, Kendall and Keane 2001), and, perhaps in some locations, successional replacement related to fire exclusion and fire suppression (Amo 2001). The most common historical whitebark pine ftre regimes are "stand-replacement", and "mixed­ severity" regimes (Morgan et al. 1994, Arno 2000, Arno and Allison-Bunnell2002). In the GYE, mixed-severity ftre regimes have been documented in whitebark pine forests in the Shoshone National forest NW of Cody, WY (Morgan and Bunting 1990), and in NE Yellowstone National Park (Barrett 1994). In Western Montana and Idaho, mixed fire regimes have been documented in whitebark pine communities in the Bob Marshall Wilderness (Keane et al. 1994), Selway-Bitterroot Wilderness (Brown et al. 1994), and the West Bighole Range (Murray et al.1998). Mattson and Reinhart (1990) found a stand­replacing fire regime on the Mount Washburn Massif, within Yellowstone National Park.


1974 ◽  
Author(s):  
Weaver T. ◽  
◽  
Dale D.

Nineteen apparently climax, non-krumholz, whitebark pine (Pinus albicaulis) forests were sampled at 2490-2930 m in the Rocky Mountains of S-Central Montana. The understory of these forests is strongly dominated by Vaccinium scoparium (median cover 40% +). Mature stands (200 + years old), with trees 12 m high, had basal areas of 14-24 m2/ha and had merchantable volumes of 195 m3/ha. Whitebark stands usually occur on soils of igneous origin. The growing season in a typical stand has 3 wet months with over 80 mm of rain and 3 dry months with less than 50 mm of rain; average maximum temperatures in this period rose to 20 C while average minimum temperatures Jell below 0 C.


2021 ◽  
Vol 135 (1) ◽  
pp. 61-67
Author(s):  
David Hamer

Seeds of Whitebark Pine (Pinus albicaulis) are a major food for Grizzly Bears (Ursus arctos) in the Yellowstone ecosystem. In Canada, Grizzly Bears are known to eat Whitebark Pine seeds, but little additional information, such as the extent of such use and habitat characteristics of feeding sites, is available. Because Grizzly Bears almost always obtain Whitebark Pine seeds by excavating cones from persistent caching sites (middens) made by Red Squirrels (Tamiasciurus hudsonicus), it is possible to infer Whitebark Pine feeding when bears are located near excavated middens in Whitebark Pine stands. During 2013–2018, I conducted a retrospective study in Banff National Park using data from 23 Grizzly Bears equipped by Parks Canada staff with global positioning system (GPS) collars. My objectives were to use GPS fixes to determine the percentage of these bears that had been located in close proximity to excavated middens containing Whitebark Pine seeds and to describe the habitat at these excavated middens. I linked 15 bears (65%) to excavated middens and, by inference, consumption of Whitebark Pine seeds. Excavated middens occurred on high-elevation (mean 2103 ± 101 [SD] m), steep (mean 26° ± 8°) slopes facing mostly (96%) north through west (0–270°). Use of Whitebark Pine seeds by at least 65% of the 23 studied Grizzly Bears suggests that conservation of Whitebark Pine in Banff National Park would concomitantly benefit the at-risk population of Grizzly Bears.


2020 ◽  
Vol 457 ◽  
pp. 117736
Author(s):  
Nickolas E. Kichas ◽  
Sharon M. Hood ◽  
Gregory T. Pederson ◽  
Richard G. Everett ◽  
David B. McWethy

Sign in / Sign up

Export Citation Format

Share Document