High Pressure Solvothermal Microencapsulation of D-Mannitol in Inorganic Shells for Thermal Energy Storage

2018 ◽  
Vol 69 (6) ◽  
pp. 1473-1477
Author(s):  
Roxana M. Piticescu ◽  
Laura M. Popescu ◽  
Anca E. Slobozeanu ◽  
Albert I. Tudor ◽  
Radu R. Piticescu ◽  
...  

D-Mannitol has been demonstrated by different authors as a new phase change material (PCM) for thermal energy storage with high latent heat, low cost, environmentally friendly chemical nature and suitable melting temperature for applications in solar collectors, space heating or industrial waste heat. The main drawback is their low thermal conductivity, affecting heat transfer properties. In this work, the microencapsulation of D-Mannitol in ZnO shells is evaluated as a procedure to increase the specific area of heat exchange. The inorganic shell based on ZnO has been selected for the microencapsulation using an in-situ solvothermal followed by spray drying. Characterization of the microcapsules obtained has been mainly carried out by XRD, DSC, IR spectroscopy and SEM. Results have shown that experimental parameters such as the pressure and reaction time for the solvothermal microencapsulation process determine the crystalline phases of the shell and their thermal energy storage properties (melting temperature and enthalpy).

Energy ◽  
2015 ◽  
Vol 89 ◽  
pp. 601-609 ◽  
Author(s):  
Iñigo Ortega-Fernández ◽  
Nicolas Calvet ◽  
Antoni Gil ◽  
Javier Rodríguez-Aseguinolaza ◽  
Abdessamad Faik ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4410
Author(s):  
Adio Miliozzi ◽  
Franco Dominici ◽  
Mauro Candelori ◽  
Elisabetta Veca ◽  
Raffaele Liberatore ◽  
...  

Thermal energy storage (TES) systems for concentrated solar power plants are essential for the convenience of renewable energy sources in terms of energy dispatchability, economical aspects and their larger use. TES systems based on the use of concrete have been demonstrated to possess good heat exchange characteristics, wide availability of the heat storage medium and low cost. Therefore, the purpose of this work was the development and characterization of a new concrete-based heat storage material containing a concrete mix capable of operating at medium–high temperatures with improved performance. In this work, a small amount of shape-stabilized phase change material (PCM) was included, thus developing a new material capable of storing energy both as sensible and latent heat. This material was therefore characterized thermally and mechanically and showed increased thermal properties such as stored energy density (up to +7%, with a temperature difference of 100 °C at an average operating temperature of 250 °C) when 5 wt% of PCM was added. By taking advantage of these characteristics, particularly the higher energy density, thermal energy storage systems that are more compact and economically feasible can be built to operate within a temperature range of approximately 150–350 °C with a reduction, compared to a concrete-only based thermal energy storage system, of approximately 7% for the required volume and cost.


2018 ◽  
Vol 40 (5) ◽  
pp. 560-575
Author(s):  
Jehanzeb Ahmad ◽  
M Najam Ul Islam ◽  
Jawwad Sabir

The benefits of thermal energy storage using phase change materials are well documented in the literature. Despite all the potential benefits of thermal energy storage, its commercial and widespread application remains limited. This is due to the high initial cost of phase change materials, extensive rework required in buildings, major modifications in HVAC systems, and the potential for leakage, fire and toxicity hazards. There is a strong need for a simple thermal energy storage solution which can be adopted by large number of consumers. Ductless split air-conditioners are portable, low cost, efficient and account for 70% of all air-conditioning systems sold worldwide each year. The present research provides a novel and low cost solution that incorporates thermal energy storage in these air conditioners, allowing them to run without electricity for 3 h. The paper deals with the detailed design aspects and engineering challenges that arise when incorporating thermal energy storage in these small units. A prototype air-conditioner with in-built thermal energy storage was developed, and all performance parameters presented have been validated through data obtained from the prototype. Our results indicate that thermal energy storage can be incorporated in split units in low cost and with minimal drop in overall energy efficiency of the system. Practical application: Incorporating thermal energy storage in split air-conditioners which enables them to run without grid for many hours has immense practical applications. Since around 50% power in any building is consumed by HVAC systems, being able to provide cooling during peak hours without using grid can significantly reduce load on the grid without compromising user comfort. For developing countries where load shedding is frequent, the users can run these air-conditioners without the use of generators or batteries thus saving costs and the environment.


2019 ◽  
Vol 21 ◽  
pp. 222-229 ◽  
Author(s):  
Lisa Boussaba ◽  
Said Makhlouf ◽  
Amina Foufa ◽  
Gilles Lefebvre ◽  
Laurent Royon

2017 ◽  
Vol 170 ◽  
pp. 149-159 ◽  
Author(s):  
Andrea Gutierrez ◽  
Svetlana Ushak ◽  
Veronica Mamani ◽  
Pedro Vargas ◽  
Camila Barreneche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document