scholarly journals Analysis of River Channel Morphology and Riparian Land Use Changes using Multi-temporal Aerial Photographs and Topographic Maps of the Early 20th Century in Gyeongan-cheon Watershed

2005 ◽  
Vol 38 (5) ◽  
pp. 379-390
Author(s):  
Geun- Ae Park ◽  
Mi-Seon Lee ◽  
Hyeon-Jun Kim ◽  
Seong-Joon Kim
2018 ◽  
Vol 13 (6) ◽  
pp. 065014
Author(s):  
Ana Bastos ◽  
Anna Peregon ◽  
Érico A Gani ◽  
Sergey Khudyaev ◽  
Chao Yue ◽  
...  

2021 ◽  
Vol 101 (1) ◽  
pp. 31-47
Author(s):  
Marko Langovic ◽  
Slavoljub Dragicevic ◽  
Ivan Novkovic ◽  
Nenad Zivkovic ◽  
Radislav Tosic ◽  
...  

Riverbank erosion and lateral channel migration are important geomorphological processes which cause various landscape, socio-economic, and environmental consequences. Although those processes are present on the territory of Serbia, there is no available data about the soil loss caused by riverbank erosion for the entire country. In this study, the spatial and temporal dynamics of the riverbank erosion for the largest internal rivers in Serbia (Velika Morava, Zapadna Morava, Juzna Morava, Pek, Mlava, Veliki Timok, Kolubara) was assessed using remote sensing and GIS. The aim of this paper is to determine the total and average soil loss over large-scale periods (1923-2020), comparing data from the available sources (aerial photographs, satellite images, and different scale paper maps). Results indicated that lateral migration caused significant problems through land loss (approximately 2,561 ha), especially arable land, and land use changes in river basins, but also economic loss due to the reduction of agricultural production. Total and average soil loss was calculated for five most representative meanders on all studied rivers, and on the basis of the obtained values, certain regularities about further development and dynamics of riverbank movement are presented. A better understanding of river channel migration in this area will be of a great importance for practical issues such as predicting channel migration rates for river engineering and planning purposes, soil and water management and land use changes, environment protection.


Author(s):  
Antonio Tomao ◽  
Barbara Ermini ◽  
Marcela Prokopov ◽  
Adriano Conte

Negative environmental changes generally addressed as ‘syndromes’ are evaluated in the context of Soil Degradation (SD) and interpreted by using a ‘Land-Use/Land Cover Changes’ (LULCCs) framework in order to disentangle ‘past trajectories’, ‘present patterns’, and ‘future changes’. This approach allows to discuss the potential impact on SD processes and it represents an informed basis for identifying measurable outcomes of SD. This study focuses on the case of Emilia Romagna, a region located in the North of Italy with high-value added agricultural productions. A multi-temporal analysis of land-use changes between 1954 and 2008 has been proposed, discussing the evolution of associated SD syndromes in Emilia Romagna. The contributing information have been used as a baseline for Sustainable Land Management (SLM) strategies. This framework of analysis provides useful tools to investigate and to monitor the effects of SD in the Mediterranean basin where several regions underwent common development patterns yelding global pathological symptoms of environmental degradation.


Author(s):  
Ali Ben Abbes ◽  
Imed Riadh Farah

Due to the growing advances in their temporal, spatial, and spectral resolutions, remotely sensed data continues to provide tools for a wide variety of environmental applications. This chapter presents the benefits and difficulties of Multi-Temporal Satellite Image (MTSI) for land use. Predicting land use changes using remote sensing is an area of interest that has been attracting increasing attention. Land use analysis from high temporal resolution remotely sensed images is important to promote better decisions for sustainable management land cover. The purpose of this book chapter is to review the background of using Hidden Markov Model (HMM) in land use change prediction, to discuss the difference on modeling using stationary as well as non-stationary data and to provide examples of both case studies (e.g. vegetation monitoring, urban growth).


2008 ◽  
Vol 2 (No. 3) ◽  
pp. 77-84
Author(s):  
R. Pavelková Chmelová ◽  
B. Šarapatka ◽  
M. Dumbrovský ◽  
P. Pavka

In this paper, the authors summarise the land use changes in the upper reaches of the Krupá river catchment, which is a left tributary of the Morava River. During last 70 years, the catchment was exposed to many important historical events that have been inscribed in the physique of the landscape in a very interesting way. The land use changes, which occurred during the last eight decades in the subcatchment of the Krupá river basin, have been analysed using historical maps, cadastral maps, and both historical and recent aerial photographs of the area. The next step is to estimate, through the CN method and DesQ hydrological model, how the runoff processes in the Krupá River catchment could be influenced by the land use changes.


2017 ◽  
Vol 21 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Antonio Hayas ◽  
Tom Vanwalleghem ◽  
Ana Laguna ◽  
Adolfo Peña ◽  
Juan V. Giráldez

Abstract. Gully erosion is an important erosive process in Mediterranean basins. However, the long-term dynamics of gully networks and the variations in sediment production in gullies are not well known. Available studies are often conducted only over a few years, while many gully networks form, grow, and change in response to environmental and land use or management changes over a long period. In order to clarify the effect of these changes, it is important to analyse the evolution of the gully network with a high temporal resolution. This study aims at analysing gully morphodynamics over a long timescale (1956–2013) in a large Mediterranean area in order to quantify gully erosion processes and their contribution to overall sediment dynamics. A gully network of 20 km2 located in southwestern Spain has been analysed using a sequence of 10 aerial photographs in the period 1956–2013. The extension of the gully network both increased and decreased in the study period. Gully drainage density varied between 1.93 km km−2 in 1956, a minimum of 1.37 km km−2 in 1980, and a maximum of 5.40 km km−2 in 2013. The main controlling factor of gully activity appeared to be rainfall. Land use changes were found to have only a secondary effect. A new Monte Carlo-based approach was proposed to reconstruct gully erosion rates from orthophotos. Gully erosion rates were found to be relatively stable between 1956 and 2009, with a mean value of 11.2 t ha−1 yr−1. In the period 2009–2011, characterized by severe winter rainfalls, this value increased significantly to 591 t ha−1 yr−1. These results show that gully erosion rates are highly variable and that a simple interpolation between the starting and ending dates greatly underestimates gully contribution during certain years, such as, for example, between 2009 and 2011. This illustrates the importance of the methodology applied using a high temporal resolution of orthophotos.


Sign in / Sign up

Export Citation Format

Share Document