This paper presents an overview of the successful conclusion of 18 months of testing the first grid-connected floating offshore wind turbine prototype in the Americas. The prototype, called VolturnUS 1:8, was installed off Castine, Maine, USA. The prototype is a 1:8 scale prototype and serves to de-risk the deployment of a full-scale 6MW turbine. VolturnUS utilizes innovations in materials, construction, and deployment technologies such as a concrete semi-submersible hull and an advanced composite tower to reduce the costs of offshore wind. The prototype unit was designed following the American Bureau of Shipping (ABS) “Guide for Building and Classing Floating Offshore Wind Turbine Installations”. Froude scaling was used in designing the 1:8-scale VolturnUS prototype so that the motions of the prototype in the relatively protected site represent those of the full-scale unit in an open site farther offshore. During the past year, a comprehensive instrumentation package monitored key performance characteristics of the platform during operational, extreme, and survival storm conditions. Data collected include: wind speed, turbine power, rotor angular frequency, blade pitch, torque, acceleration; tower bending moment, 6 DOF accelerations at tower top and base, mooring line tensions, and wave elevation at the platform. During the past year the prototype has experienced many environments representative of scaled ABS design conditions including operational wind and sea-states, 50-year sea states and 500-year survival sea states.
This large data set provides a unique view of a near full-scale floating wind turbine subjected to its prescribed environmental conditions. Inspections of the concrete hull following removal provided confirmation of material durability. Marine growth measurements provide data for future design efforts.