Robust Contact and Friction Model for the Fatigue Estimate of a Wire Rope in the Mooring Line of a Floating Offshore Wind Turbine

Author(s):  
F. Bussolati ◽  
P.-A. Guidault ◽  
M. L. E. Guiton ◽  
O. Allix ◽  
P. Wriggers
Author(s):  
Anthony M. Viselli ◽  
Andrew J. Goupee ◽  
Habib J. Dagher ◽  
Christopher K. Allen

This paper presents an overview of the successful conclusion of 18 months of testing the first grid-connected floating offshore wind turbine prototype in the Americas. The prototype, called VolturnUS 1:8, was installed off Castine, Maine, USA. The prototype is a 1:8 scale prototype and serves to de-risk the deployment of a full-scale 6MW turbine. VolturnUS utilizes innovations in materials, construction, and deployment technologies such as a concrete semi-submersible hull and an advanced composite tower to reduce the costs of offshore wind. The prototype unit was designed following the American Bureau of Shipping (ABS) “Guide for Building and Classing Floating Offshore Wind Turbine Installations”. Froude scaling was used in designing the 1:8-scale VolturnUS prototype so that the motions of the prototype in the relatively protected site represent those of the full-scale unit in an open site farther offshore. During the past year, a comprehensive instrumentation package monitored key performance characteristics of the platform during operational, extreme, and survival storm conditions. Data collected include: wind speed, turbine power, rotor angular frequency, blade pitch, torque, acceleration; tower bending moment, 6 DOF accelerations at tower top and base, mooring line tensions, and wave elevation at the platform. During the past year the prototype has experienced many environments representative of scaled ABS design conditions including operational wind and sea-states, 50-year sea states and 500-year survival sea states. This large data set provides a unique view of a near full-scale floating wind turbine subjected to its prescribed environmental conditions. Inspections of the concrete hull following removal provided confirmation of material durability. Marine growth measurements provide data for future design efforts.


2019 ◽  
Vol 7 (4) ◽  
pp. 115 ◽  
Author(s):  
Yane Li ◽  
Conghuan Le ◽  
Hongyan Ding ◽  
Puyang Zhang ◽  
Jian Zhang

The paper discusses the effects of mooring configurations on the dynamic response of a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the dynamic response of the platform, tensions in mooring lines, and bending moment at the tower base and blade root under four different mooring configurations are checked. A well-stabilized configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30°) is selected to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the mooring lines in the upwind wave direction are broken, an increased motion response of the platform will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has enough stability.


2021 ◽  
Vol 9 (10) ◽  
pp. 1093
Author(s):  
Shan Gao ◽  
Lixian Zhang ◽  
Wei Shi ◽  
Bin Wang ◽  
Xin Li

Offshore wind energy, a clean energy resource, is considered to be a possible alternative to fossil energy. Floating offshore wind technology is considered to be a proper concept to develop abundant wind energy in deep water. Considering the reality of offshore wind energy development in China, the floating offshore wind turbine concept is expected to be developed at moderate water depths. In this paper, a mooring system of the WindFloat semisubmersible floating offshore wind turbine (SFOWT) at a water depth of 60 m is designed. The dynamic responses of the WindFloat SFOWT under different wind–wave combination conditions are investigated using the coupled method and the simplified method, which do not include the effect of the tower top motion in the aerodynamic calculation. The results show that the dynamic responses of the WindFloat SFOWT, including the platform motions, tower loads, and mooring line tensions, perform fairly well at a moderate water depth. A comparison between the coupled method and simplified method shows that the calculated results are slightly different between the different conditions for the time domain results, response spectra results, and fatigue results. In addition, mooring line 1 (ML 1) suffers higher fatigue damage than ML2, which should be paid more attention.


Author(s):  
Wei-ting Hsu ◽  
Krish P. Thiagarajan ◽  
Matthew Hall ◽  
Michael MacNicoll ◽  
Richard Akers

There are a number of design challenges facing mooring systems of floating offshore wind turbine (FOWT) platforms in an offshore environment. Some unique aspects of the FOWT industry should be considered when examining applicability of established offshore mooring practices. Important among these are: economy and cost effectiveness; light weight minimal platforms; and water depths ranging from 50–300 m. A lighter displacement platform in shallow water, supported by lines with light to moderate pre-tension can result in a higher probability of slack line events and hence snap loads during re-engagement. Such loads can result in shock on the line material and considerably reduce the fatigue life. Such events have the potential to occur in various sea states, and not necessarily limited to extreme conditions. These conditions will be dependent on structure resonant motions, which are influenced by wind loads and moments, wave conditions and mooring line properties. Model tests of typical concepts for FOWT reported in literature have shown occasional slack line episodes. This paper is a review of literature on snap load occurrence in marine applications, including lifting and lowering operations, ROV and diving bell operations. This paper presents a case study of a FOWT. Special focus is on mooring systems which are affected by impact load conditions. Criteria are reviewed and consequences are documented.


Author(s):  
mohammad motallebi ◽  
Hassan Ghassemi

In this paper, with the purpose of improving the mechanical behavior of DeepCwind semi-submersible floating offshore wind turbine (FOWT) platform mooring lines, nonlinear catenary cables of platform are divided into multi-segments and intermediate buoy. The mathematical formulations of the dynamic equation acted on the cable with buoys are described. Present study is employed to the OC4-DeepCwind semi-submersible FOWT platform. It is designed for 200-meter water depth with mooring lines consist of three catenary steel chain cables that have an angle of 120 degrees to each other. The dynamic response of multi-segment catenary mooring line with different buoys radiuses and different positions along the cables were investigated. The full-scale platform was modeled in ANSYS-AQWA software and the simulations are performed in harsh offshore. The tension, strain, anchor uplift, cable uplift for different buoy radiuses and its position along cable are presented and discussed. Moreover, platform motions at three directions (surge, heave and pitch) are also analyzed. It is concluded that by correct selection of the buoy volume and position along cable, the tension of the cable may be reduced up to 45%. By incorrect selection of the buoy, the results will cause adverse effects.


Sign in / Sign up

Export Citation Format

Share Document