scholarly journals Fault Diameter of Folded Hyper-Star Interconnection Networks FHS(2n,n)

2010 ◽  
Vol 17A (1) ◽  
pp. 1-8
Author(s):  
Jong-Seok Kim ◽  
Hyeong-Ok Lee
2020 ◽  
Vol 31 (02) ◽  
pp. 233-252
Author(s):  
Yuejuan Han ◽  
Lantao You ◽  
Cheng-Kuan Lin ◽  
Jianxi Fan

The topology properties of multi-processors interconnection networks are important to the performance of high performance computers. The hypercube network [Formula: see text] has been proved to be one of the most popular interconnection networks. The [Formula: see text]-dimensional locally twisted cube [Formula: see text] is an important variant of [Formula: see text]. Fault diameter and wide diameter are two communication performance evaluation parameters of a network. Let [Formula: see text]), [Formula: see text] and [Formula: see text] denote the diameter, the [Formula: see text] fault diameter and the wide diameter of [Formula: see text], respectively. In this paper, we prove that [Formula: see text] if [Formula: see text] is an odd integer with [Formula: see text], [Formula: see text] if [Formula: see text] is an even integer with [Formula: see text].


Author(s):  
Abderezak Touzene ◽  
Khaled Day

We obtain the conditional fault-diameter of the square torus interconnection network under the condition of forbidden faulty sets (i.e. assuming that each non-faulty processor has at least one non-faulty neighbor). We show that under this condition, the square torus, whose connectivity is 4, can tolerate up to 5 faulty nodes without becoming disconnected. The conditional node connectivity is, therefore, 6. We also show that the conditional fault-diameter of the square torus is equal to the fault-free diameter plus two. With this result the torus joins a group of interconnection networks (including the hypercube and the star-graph) whose conditional fault-diameter has been shown to be only two units over the fault-free diameter. Two fault-tolerant routing algorithms are discussed based on the proposed vertex disjoint paths construction.  


1987 ◽  
Vol 13 (5-6) ◽  
pp. 577-582 ◽  
Author(s):  
M.S. Krishnamoorthy ◽  
B. Krishnamurthy

Author(s):  
Khaled Day ◽  
Abderezak Touzene

We obtain the conditional fault diameter of the k-ary n-cube interconnection network. It has been previously shown that under the condition of forbidden faulty sets (i.e. assuming each non-faulty node has at least one non-faulty neighbor), the k-ary n-cube, whose connectivity is 2n, can tolerate up to 4n-3 faulty nodes without becoming disconnected. We extend this result by showing that the conditional fault-diameter of the k-ary n-cube is equal to the fault-free diameter plus two. This means that if there are at most 4n-3 faulty nodes in the k-ary n-cube and if every non-faulty node has at least one non-faulty neighbor, then there exists a fault-free path of length at most the diameter plus two between any two non faulty nodes. We also show how to construct these fault-free paths. With this result the k-ary n-cube joins a group of interconnection networks (including the hypercube and the star-graph) whose conditional fault diameter has been shown to be only two units over the fault-free diameter.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


1983 ◽  
Vol 11 (3) ◽  
pp. 309-315 ◽  
Author(s):  
W. Kent Fuchs ◽  
Jacob A. Abraham ◽  
Kuang-Hua Huang

Sign in / Sign up

Export Citation Format

Share Document