Distribution of sulfides and PGE minerals in the picritic and taxitic gabbro-dolerites of the Norilsk 1 intrusion

2021 ◽  
Vol 59 (6) ◽  
pp. 1437-1451
Author(s):  
Nadezhda Tolstykh ◽  
Jonathan Garcia ◽  
Gennadiy Shvedov

ABSTRACT Disseminated ores in the Norilsk 1 intrusion were studied to elucidate the typomorphic features of sulfides and noble metal mineralizations in picritic and taxitic (or lower olivine) gabbro-dolerites. The former are characterized by the development of a low-sulfur sulfide association (troilite, Fe-rich pentlandite, talnakhite, chalcocite, native copper) while the latter exhibits a high-sulfur association (monoclinic pyrrhotite, Ni-rich pentlandite, pyrite, heazlewoodite). The contact between these types of rocks is geochemically and mineralogically contrasting. The mineralogical and geochemical zoning directed from the roof to the base of each layer is expressed by an increase in the Cu content (and chalcopyrite) in ores, an increase in the concentration of Ni in pentlandite and S in pyrrhotite in line with a decrease of the crystallization temperature, and an increase in sulfur fugacity in the same direction. Zoning of Pd(Pt) mineralization in picritic and taxitic (olivine) gabbro-dolerites is uniform and characterized by the distribution of Pd-Sn compounds in the upper parts (together with Pd-Pb minerals in picritic rocks) and Pd-As compounds in the lower parts of the sections according to a drop in temperature. Such reverse zoning contradicts the typical mechanism of differentiation by fractional crystallization, and possibly suggests a fluid-magmatic nature. Mineralogical and geochemical features in platinum group element-Cu-Ni-bearing rocks are consistent with the idea that different stages of multi-pulse intrusions of mafic-ultramafic magmas with different compositions formed the picritic and taxitic gabbro-dolerites of the Norilsk region.

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 688
Author(s):  
Nadezhda Tolstykh ◽  
Gennadiy Shvedov ◽  
Aleksandr Polonyankin ◽  
Vladimir Korolyuk

The purpose of this study is to show the patterns of distribution of disseminated sulfide in layered rocks based on the numerous geochemical and mineralogical data obtained for eight boreholes of the Norilsk intrusion (southern part of the Norilsk 1 deposit). There is a common trend of sulfide liquid fractionation in the Main Ore Horizon, which is composed of picritic and taxite (or olivine) gabbro-dolerites: the Ni/Cu in both rock types decreases down all sections, indicating an increase in the degree of fractionation of the sulfide liquid from top to bottom. On the contrary, the Ni/Fe ratios in pentlandite increase in this direction due to an increase in sulfur fugacity. However, picrite and taxite/olivine gabbro-dolerites are very distinctly separated by Ni/Cu values: these values are >1 in picritic gabbro-dolerite while they are always <1 in taxite/olivine gabbro-dolerite. These rock types are distinguished by sulfide assemblages. The first includes troilite, Fe-rich pentlandite, chalcopyrite, cubanite, talnahite, bornite and copper (low sulfur association); the second one is composed of monoclinic pyrrhotite, chalcopyrite, Ni-rich pentlandite and pyrite (high sulfur association). A two-stage magma injection with different ore specializations is supposed for picritic and taxite/olivine gabbro-dolerites.


2019 ◽  
Vol 56 (7) ◽  
pp. 774-789
Author(s):  
Jordan J. Lindsay ◽  
Hannah S.R. Hughes ◽  
Dermot Smyth ◽  
Iain McDonald ◽  
Adrian J. Boyce ◽  
...  

The ∼60 m thick Magilligan Sill is part of the British Palaeogene Igneous Province in the North Atlantic. The sill comprises layers of dolerite and olivine gabbro, and it intrudes a thick sequence of Mesozoic mudstones and marls, which are locally baked at the sill margins. Since 2014, the sill has been an exploration target for orthomagmatic Ni – Cu – platinum group element (PGE) sulfide mineralisation analogous to the Noril’sk-Talnakh intrusion in Russia. We present new petrological, geochemical, and S isotope data to assess the prospectivity of the sill and the underlying magmatic plumbing system. Most sulfides in the dolerite portions of the sill are <50 μm in size and comprise only pyrite with PGE abundances below the detection limit. In the olivine gabbros, >150 μm size pentlandite, chalcopyrite, and pyrrhotite grains contain <4 ppm total PGE, 1460 ppm Co, and 88 ppm Ag. Pyrite from the dolerites have δ34S ranging from −10.0‰ to +3.4‰ and olivine gabbro sulfides range from −2.5‰ to −1.1‰, suggesting widespread crustal contamination. The S/Se ratios of sulfides in the dolerites and olivine gabbros range from 3500 to 19 500 and from 1970 to 3710, respectively, indicating that the latter may have come from upstream in the magma plumbing system. The Magilligan Sill records multiple injections of mafic magma into an inflating sill package, each with distinct mechanisms towards S saturation. Whilst the sulfide minerals in the sill do not constitute significant mineralisation themselves, detailed in situ studies highlight a divergence in S saturation histories and suggest that a larger volume of olivine gabbro sulfides at depth may be prospective.


2018 ◽  
Vol 82 (3) ◽  
pp. 725-749 ◽  
Author(s):  
Thomas Oberthür ◽  
Frank Melcher ◽  
Tobias Fusswinkel ◽  
Alfons M. van den Kerkhof ◽  
Graciela M. Sosa

ABSTRACTThe Waterberg platinum deposit is an extraordinary example of a vein-type hydrothermal quartz-hematite-PGE (platinum-group element) mineralization. This study concentrates on the geochemical character of the ores and the platinum-group mineral (PGM) assemblage by application of reflected-light and scanning electron microscopy followed by electron probe microanalysis.The PGM-bearing quartz veins show multiple banding indicating numerous pulses of fluid infiltration. Mineralization was introduced contemporaneously with the earliest generation of vein quartz and hematite. High oxygen and low sulfur fugacities of the mineralizing fluids are indicated by hematite as the predominant opaque mineral and the lack of sulfides.The ‘Waterberg type’ mineralization is characterized by unique metal proportions, namely Pt>Pd>Au, interpreted as a fingerprint to the cradle of the metals, namely rocks and ores of the Bushveld Complex, or reflecting metal fractionation during ascent of an oxidized, evolving fluid. The PGM assemblage signifies three main depositional and alteration events. (1) Deposition of native Pt and Pt–Pd alloys (>90% of the PGM assemblage) and Pd–Sb–As compounds (Pt-rich isomertieite and mertieite II) from hydrothermal fluids. (2) Hydrothermal alteration of Pt by Cu-rich fluids and formation of Pt–Cu alloys and hongshiite [PtCu]. (3) Weathering/oxidation of the ores producing Pd/Pt-oxides/hydroxides.Platinum-group element transport was probably by chloride complexes in moderately acidic and strongly oxidizing fluids of relatively low salinity, and depositional temperatures were in the range 400–200°C. Alternatively, quartz and ore textures may hint to noble metal transport in a colloidal form and deposition as gels.The source of the PGE is probably in platiniferous rocks or ores of the Bushveld Complex which were leached by hydrothermal solutions. If so, further Waterberg-type deposits may be present, and a prime target area would be along the corridor of the Thabazimbi-Murchison-Lineament where geothermal springs are presently still active.


2016 ◽  
Author(s):  
Ijaz Ahmad ◽  
◽  
Jeremy P. Richards ◽  
Jingao Liu ◽  
D. Graham Pearson ◽  
...  

Author(s):  
Pedro Waterton ◽  
James Mungall ◽  
D. Graham Pearson

2019 ◽  
Vol 114 (3) ◽  
pp. 569-590 ◽  
Author(s):  
Felix E.D. Kaufmann ◽  
Marie C. Hoffmann ◽  
Kai Bachmann ◽  
Ilya V. Veksler ◽  
Robert B. Trumbull ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document