TRACING GARNET ORIGINS IN GRANITOID ROCKS BY OXYGEN ISOTOPE ANALYSIS: EXAMPLES FROM THE SOUTH MOUNTAIN BATHOLITH, NOVA SCOTIA

2011 ◽  
Vol 49 (2) ◽  
pp. 417-439 ◽  
Author(s):  
J. S. Lackey ◽  
S. Erdmann ◽  
J. S. Hark ◽  
R. M. Nowak ◽  
K. E. Murray ◽  
...  
1980 ◽  
Vol 17 (1) ◽  
pp. 132-141 ◽  
Author(s):  
F. J. Longstaffe ◽  
T. E. Smith ◽  
K. Muehlenbachs

The oxygen isotope ratios for 127 rocks and coexisting minerals from Paleozoic granitoids and clastic metasedimentary rocks of southwestern Nova Scotia have been measured. The whole-rock δ18O values for samples of the South Mountain batholith range from 10.1–12.0‰.But discrete granitoid plutons, located to the south of the South Mountain batholith, have lower δ18O values (7.8–10.4‰). Coexisting minerals from the Nova Scotia granitoids are near isotopic equilibrium, indicating that the whole-rock δ18O values primarily reflect the δ18O of the magma, rather than secondary alteration processes. The Meguma Group clastic metasedimentary rocks that host the Nova Scotia granitoids range in δ18O from 10.1–12.9‰. These clastic metasedimentary rocks show no systematic geographic variation in δ18O. The greenschist facies Meguma Group rocks that host the South Mountain batholith have similar δ18O values to the amphibolite facies equivalents located about the southern discrete plutons. Large scale isotopic exchange between the Meguma Group and the South Mountain batholith, or the southern plutons, is not evident.The relatively high δ18O values of the peraluminous South Mountain batholith (10.1–12.0‰) indicate that it formed by anatexis of 18O-rich clastic metasedimentary rocks. The southern plutons were also derived by partial melting of clastic metasedimentary rocks, but their lower δ18O values reflect exchange of the source material with a low 18O reservoir (mafic magmas?) prior to, or during anatexis.The sheared Brenton pluton is much lower in δ18O (5.0‰) than any of the other rocks, probably because of exchange with low 18O fluids during shearing.


1997 ◽  
Vol 109 (10) ◽  
pp. 1279-1293 ◽  
Author(s):  
Keith Benn ◽  
Richard J. Horne ◽  
Daniel J. Kontak ◽  
Geoffrey S. Pignotta ◽  
Neil G. Evans

1989 ◽  
Vol 26 (1) ◽  
pp. 176-191 ◽  
Author(s):  
Georgia Pe-Piper ◽  
Bosko D. Loncarevic

Eight short drill cores have been examined from the continental shelf southwest of Nova Scotia. Four cores recovered granitoid rocks of two types. Ilmenite-bearing granitoid rocks petrographically and geochemically resemble granodiorites of the South Mountain Batholith and granites of the Seal Island Pluton. Magnetite-bearing granitoid rocks are also peraluminous but have no exact analogues onshore in Nova Scotia. Two cores recovered metamorphic rocks in a small area 50 km south of Seal Island. One consits of chlorite–muscovite–quartz schist, geochemically similar to rocks of the Halifax Formation. The second sampled epidote–chlorite–quartz schist similar to metavolcanic rocks of the White Rock Formation. One further core sampled quartzite, and another sampled a metavolcanic rock (possibly erratic).The regional extent of these lithotypes can be inferred from gravity and aeromagnetic data. Regional gravity data suggest the presence of a large granite body off southwestern Nova Scotia. In this area, magnetic anomalies are irregular, apparently reflecting the presence of magnetite-bearing granites. The layer-stripping method of analyzing the magnetic field shows that the area is underlain at depth by high magnetic anomalies. Large near-surface linear magnetic anomalies are used to map the extent of the volcanic rocks of the White Rock Formation. The area is cut by several northwest-trending faults that postdate Acadian folding but predate the earliest Jurassic magmatism of the Shelburne Dyke and North Mountain basalt. The unusual magnetic signature of the area off southwestern Nova Scotia may reflect a different basement; it is possible that Meguma rocks are thrust over the Avalon Terrane. Alternatively, it may be solely the result of magnetite-bearing granites. These granites may be related to a Permian thermal event in southwest Nova Scotia, and they have some petrographic similarity to young granites of the Piedmont Zone of South Carolina.


1976 ◽  
Vol 56 (3) ◽  
pp. 279-287 ◽  
Author(s):  
D. B. Clarke ◽  
C. B. McKenzie ◽  
G. K. Muecke ◽  
S. W. Richardson

Sign in / Sign up

Export Citation Format

Share Document