scholarly journals Pitch strength and Stevens’s power law

2002 ◽  
Vol 64 (3) ◽  
pp. 437-450 ◽  
Author(s):  
William P. Shofner ◽  
George Selas
2021 ◽  
Vol 12 ◽  
Author(s):  
Josef Schlittenlacher ◽  
Wolfgang Ellermeier

Continuous magnitude estimation and continuous cross-modality matching with line length can efficiently track the momentary loudness of time-varying sounds in behavioural experiments. These methods are known to be prone to systematic biases but may be checked for consistency using their counterpart, magnitude production. Thus, in Experiment 1, we performed such an evaluation for time-varying sounds. Twenty participants produced continuous cross-modality matches to assess the momentary loudness of fourteen songs by continuously adjusting the length of a line. In Experiment 2, the resulting temporal line length profile for each excerpt was played back like a video together with the given song and participants were asked to continuously adjust the volume to match the momentary line length. The recorded temporal line length profile, however, was manipulated for segments with durations between 7 to 12 s by eight factors between 0.5 and 2, corresponding to expected differences in adjusted level of −10, −6, −3, −1, 1, 3, 6, and 10 dB according to Stevens’s power law for loudness. The average adjustments 5 s after the onset of the change were −3.3, −2.4, −1.0, −0.2, 0.2, 1.4, 2.4, and 4.4 dB. Smaller adjustments than predicted by the power law are in line with magnitude-production results by Stevens and co-workers due to “regression effects.” Continuous cross-modality matches of line length turned out to be consistent with current loudness models, and by passing the consistency check with cross-modal productions, demonstrate that the method is suited to track the momentary loudness of time-varying sounds.


1971 ◽  
Vol 10 (3) ◽  
pp. 147-149 ◽  
Author(s):  
Martha Teghtsoonian ◽  
Robert Teghtsoonian

1989 ◽  
Vol 12 (2) ◽  
pp. 276-276
Author(s):  
Rhona P. Hellman

1999 ◽  
Vol 173 ◽  
pp. 289-293 ◽  
Author(s):  
J.R. Donnison ◽  
L.I. Pettit

AbstractA Pareto distribution was used to model the magnitude data for short-period comets up to 1988. It was found using exponential probability plots that the brightness did not vary with period and that the cut-off point previously adopted can be supported statistically. Examination of the diameters of Trans-Neptunian bodies showed that a power law does not adequately fit the limited data available.


1968 ◽  
Vol 11 (1) ◽  
pp. 169-178 ◽  
Author(s):  
Alan Gill ◽  
Charles I. Berlin

The unconditioned GSR’s elicited by tones of 60, 70, 80, and 90 dB SPL were largest in the mouse in the ranges around 10,000 Hz. The growth of response magnitude with intensity followed a power law (10 .17 to 10 .22 , depending upon frequency) and suggested that the unconditioned GSR magnitude assessed overall subjective magnitude of tones to the mouse in an orderly fashion. It is suggested that hearing sensitivity as assessed by these means may be closely related to the spectral content of the mouse’s vocalization as well as to the number of critically sensitive single units in the mouse’s VIIIth nerve.


2007 ◽  
Vol 23 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Carmen Hagemeister

Abstract. When concentration tests are completed repeatedly, reaction time and error rate decrease considerably, but the underlying ability does not improve. In order to overcome this validity problem this study aimed to test if the practice effect between tests and within tests can be useful in determining whether persons have already completed this test. The power law of practice postulates that practice effects are greater in unpracticed than in practiced persons. Two experiments were carried out in which the participants completed the same tests at the beginning and at the end of two test sessions set about 3 days apart. In both experiments, the logistic regression could indeed classify persons according to previous practice through the practice effect between the tests at the beginning and at the end of the session, and, less well but still significantly, through the practice effect within the first test of the session. Further analyses showed that the practice effects correlated more highly with the initial performance than was to be expected for mathematical reasons; typically persons with long reaction times have larger practice effects. Thus, small practice effects alone do not allow one to conclude that a person has worked on the test before.


Sign in / Sign up

Export Citation Format

Share Document