scholarly journals Representational momentum in vision and touch: Visual motion information biases tactile spatial localization

2020 ◽  
Vol 82 (5) ◽  
pp. 2618-2629
Author(s):  
Simon Merz ◽  
Hauke S. Meyerhoff ◽  
Christian Frings ◽  
Charles Spence
1991 ◽  
Vol 66 (3) ◽  
pp. 651-673 ◽  
Author(s):  
D. S. Yamasaki ◽  
R. H. Wurtz

1. Ibotenic acid lesions in the monkey's middle temporal area (MT) and the medial superior temporal area (MST) in the superior temporal sulcus (STS) have previously been shown to produce a deficit in initiation of smooth-pursuit eye movements to moving visual targets. The deficits, however, recovery within a few days. In the present experiments we investigated the factors that influence that recovery. 2. We tested two aspects of the monkey's ability to use motion information to acquire moving targets. We used eye-position error as a measure of the monkey's ability to make accurate initial saccades to the moving target. We measured eye speed within the first 100 ms after the saccade to evaluate the monkey's initial smooth pursuit. 3. We determined that pursuit recovery was not dependent specifically on the use of neurotoxic lesions. Although the rate of recovery was slightly altered by replacing the usual neurotoxin (ibotenic acid) with another neurotoxin [alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] or with an electrolytic lesion, pursuit recovery still occurred within a period of days to weeks. 4. There was a relationship between the size and location of the lesion and the recovery time. The time to recovery for eye-position error and initial eye speed increased with the fraction of MT removed. Whether the rate of recovery and size of lesions within regions on the anterior bank were related was unresolved. 5. We found that a large AMPA lesion within the STS that removed all of MT and nearly all of MST drastically altered the rate of recovery. Recovery was incomplete more than 7 mo after the lesion. Even with this lesion, however, the monkey's ability to use motion information for pursuit was not completely eliminated. 6. The large lesion also included parts of areas V1, V2, V3, and V4, but analysis of the visual fields associated with this lesion indicated that these areas probably did not have a substantial effect on recovery. 7. We tested whether visual motion experience of the monkey after a lesion was necessary for recovery by limiting the monkey's experience either by using a mask or by using 4-Hz stroboscopic illumination. In one monkey the eye-position error component of pursuit was prolonged to greater than 2 wk, but recovery of eye speed was not. Reduced motion experience had little effect on recovery in the other two monkeys. These results suggest that such visual motion experience is not necessary for the recovery of pursuit.(ABSTRACT TRUNCATED AT 400 WORDS)


2000 ◽  
Vol 12 (4) ◽  
pp. 569-582 ◽  
Author(s):  
Michel-Ange Amorim ◽  
Wilfried Lang ◽  
Gerald Lindinger ◽  
Dagmar Mayer ◽  
Lüder Deecke ◽  
...  

Under appropriate conditions, an observer's memory for the final position of an abruptly halted moving object is distorted in the direction of the represented motion. This phenomenon is called “representational momentum” (RM). We examined the effect of mental imagery instructions on the modulation of spatial orientation processing by testing for RM under conditions of picture versus body rotation perception and imagination. Behavioral data were gathered via classical reaction time and error measurements, whereas brain activity was recorded with the help of magnetoence-phalography (MEG). Due to the so-called inverse problem and to signal complexity, results were described at the signal level rather than with the source location modeling. Brain magnetic field strength and spatial distribution, as well as latency of P200m evoked fields were used as neurocognitive markers. A task was devised where a subject examined a rotating sea horizon as seen from a virtual boat in order to extrapolate either the picture motion or the body motion relative to the picture while the latter disappeared temporarily until a test-view was displayed as a final orientation candidate. Results suggest that perceptual interpretation and extrapolation of visual motion in the roll plane capitalize on the fronto-parietal cortical networks involving working memory processes. Extrapolation of the rotational dynamics of sea horizon revealed a RM effect simulating the role of gravity in rotational equilibrium. Modulation of the P200m component reflected spatial orientation processing and a non-voluntary detection of an incongruity between displayed and expected final orientations given the implied motion. Neuromagnetic properties of anticipatory (Contingent Magnetic Variation) and evoked (P200m) brain magnetic fields suggest, respectively, differential allocation of attentional resources by mental imagery instructions (picture vs. body tilt), and a communality of neural structures (in the right centro-parietal region) for the control of both RM and mental rotation processes. Finally, the RM of the body motion is less prone to forward shifts than that of picture motion evidencing an internalization of the implied mass of the virtual body of the observer.


2020 ◽  
Vol 6 (1) ◽  
pp. 335-362
Author(s):  
Tatiana Pasternak ◽  
Duje Tadin

Psychophysical and neurophysiological studies of responses to visual motion have converged on a consistent set of general principles that characterize visual processing of motion information. Both types of approaches have shown that the direction and speed of target motion are among the most important encoded stimulus properties, revealing many parallels between psychophysical and physiological responses to motion. Motivated by these parallels, this review focuses largely on more direct links between the key feature of the neuronal response to motion, direction selectivity, and its utilization in memory-guided perceptual decisions. These links were established during neuronal recordings in monkeys performing direction discriminations, but also by examining perceptual effects of widespread elimination of cortical direction selectivity produced by motion deprivation during development. Other approaches, such as microstimulation and lesions, have documented the importance of direction-selective activity in the areas that are active during memory-guided direction comparisons, area MT and the prefrontal cortex, revealing their likely interactions during behavioral tasks.


2007 ◽  
Vol 98 (5) ◽  
pp. 2918-2932 ◽  
Author(s):  
Seiji Ono ◽  
Michael J. Mustari

The smooth pursuit (SP) system can adapt its response to developmental changes, injury, and behavioral context. Previous lesion and single-unit recording studies show that the macaque cerebellum plays a role in SP initiation, maintenance, and adaptation. The aim of this study was to determine the potential role of the DLPN in SP adaptation. The DLPN receives inputs from the cortical SP system and delivers eye and visual motion information to the dorsal/ventral paraflocculus and vermis of the cerebellum. We studied SP adaptation in two juvenile rhesus monkeys ( Macaca mulatta), using double steps of target speed that step- up (10–30°/s) or step-down (25–5°/s). We used microinjection of muscimol (≤2%; 0.15 μl) to reversibly inactivate the DLPN, unilaterally. After DLPN inactivation, initial ipsilesional SP acceleration (first 100 ms) was significantly reduced by 47–74% ( P < 0.01; unpaired t-test) of control values in the single-speed step-ramp paradigm. Similarly, ipsilesional steady-state SP velocity was also reduced by 59–78% ( P < 0.01; unpaired t-test) of control values. Contralesional SP was not impaired after DLPN inactivation. Control testing showed significant adaptive changes of initial SP eye acceleration after 100 trials in either step-up or step-down paradigms. After inactivation, during ipsilesional SP, adaptation was impaired in the step-up but not in the step-down paradigm. In contrast, during contralesional tracking, adaptive capability remained in the step-down but not in the step-up paradigm. Therefore SP adaptation could depend, in part, on direction sensitive eye/visual motion information provided by DLPN neurons to cerebellum.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yosuke Suzuishi ◽  
Souta Hidaka ◽  
Scinob Kuroki

2010 ◽  
Vol 2 (7) ◽  
pp. 228-228 ◽  
Author(s):  
A. C. Huk ◽  
J. Palmer ◽  
M. N. Shadlen

2015 ◽  
Vol 21 (2) ◽  
pp. 125-131
Author(s):  
Hiroshi USHIODA ◽  
Yuichi WADA

2019 ◽  
Vol 206 (2) ◽  
pp. 109-124 ◽  
Author(s):  
Alexander Borst ◽  
Jürgen Haag ◽  
Alex S. Mauss

Abstract Detecting the direction of image motion is a fundamental component of visual computation, essential for survival of the animal. However, at the level of individual photoreceptors, the direction in which the image is shifting is not explicitly represented. Rather, directional motion information needs to be extracted from the photoreceptor array by comparing the signals of neighboring units over time. The exact nature of this process as implemented in the visual system of the fruit fly Drosophila melanogaster has been studied in great detail, and much progress has recently been made in determining the neural circuits giving rise to directional motion information. The results reveal the following: (1) motion information is computed in parallel ON and OFF pathways. (2) Within each pathway, T4 (ON) and T5 (OFF) cells are the first neurons to represent the direction of motion. Four subtypes of T4 and T5 cells exist, each sensitive to one of the four cardinal directions. (3) The core process of direction selectivity as implemented on the dendrites of T4 and T5 cells comprises both an enhancement of signals for motion along their preferred direction as well as a suppression of signals for motion along the opposite direction. This combined strategy ensures a high degree of direction selectivity right at the first stage where the direction of motion is computed. (4) At the subsequent processing stage, tangential cells spatially integrate direct excitation from ON and OFF-selective T4 and T5 cells and indirect inhibition from bi-stratified LPi cells activated by neighboring T4/T5 terminals, thus generating flow-field-selective responses.


Sign in / Sign up

Export Citation Format

Share Document