Auditory enhancement of visual searches for event scenes

Author(s):  
Tomoki Maezawa ◽  
Miho Kiyosawa ◽  
Jun I. Kawahara
2005 ◽  
Vol 33 (1) ◽  
pp. 2-17 ◽  
Author(s):  
D. Colbry ◽  
D. Cherba ◽  
J. Luchini

Abstract Commercial databases containing images of tire tread patterns are currently used by product designers, forensic specialists and product application personnel to identify whether a given tread pattern matches an existing tire. Currently, this pattern matching process is almost entirely manual, requiring visual searches of extensive libraries of tire tread patterns. Our work explores a first step toward automating this pattern matching process by building on feature analysis techniques from computer vision and image processing to develop a new method for extracting and classifying features from tire tread patterns and automatically locating candidate matches from a database of existing tread pattern images. Our method begins with a selection of tire tread images obtained from multiple sources (including manufacturers' literature, Web site images, and Tire Guides, Inc.), which are preprocessed and normalized using Two-Dimensional Fast Fourier Transforms (2D-FFT). The results of this preprocessing are feature-rich images that are further analyzed using feature extraction algorithms drawn from research in computer vision. A new, feature extraction algorithm is developed based on the geometry of the 2D-FFT images of the tire. The resulting FFT-based analysis allows independent classification of the tire images along two dimensions, specifically by separating “rib” and “lug” features of the tread pattern. Dimensionality of (0,0) indicates a smooth treaded tire with no pattern; dimensionality of (1,0) and (0,1) are purely rib and lug tires; and dimensionality of (1,1) is an all-season pattern. This analysis technique allows a candidate tire to be classified according to the features of its tread pattern, and other tires with similar features and tread pattern classifications can be automatically retrieved from the database.


2020 ◽  
Vol 21 (6) ◽  
pp. 485-496
Author(s):  
Axel Ahrens ◽  
Suyash Narendra Joshi ◽  
Bastian Epp

Abstract The auditory system uses interaural time and level differences (ITD and ILD) as cues to localize and lateralize sounds. The availability of ITDs and ILDs in the auditory system is limited by neural phase-locking and by the head size, respectively. Although the frequency-specific limitations are well known, the relative contribution of ITDs and ILDs in individual frequency bands in broadband stimuli is unknown. To determine these relative contributions, or spectral weights, listeners were asked to lateralize stimuli consisting of eleven simultaneously presented 1-ERB-wide noise bands centered between 442 and 5544 Hz and separated by 1-ERB-wide gaps. Either ITDs or ILDs were varied independently across each noise band, while fixing the other interaural disparity to either 0 dB or 0 μs. The weights were obtained using a multiple linear regression analysis. In a second experiment, the effect of auditory enhancement on the spectral weights was investigated. The enhancement of single noise bands was realized by presenting ten of the noise bands as preceding and following sounds (pre- and post-cursors, respectively). Listeners were asked to lateralize the stimuli as in the first experiment. Results show that in the absence of pre- and post-cursors, only the lowest or highest frequency band received highest weight for ITD and ILD, respectively. Auditory enhancement led to significantly enhanced weights given to the band without the pre- and post-cursor. The weight enhancement could only be observed at low frequencies, when determined with ITD cues and for low and high frequencies for ILDs. Hence, the auditory system seems to be able to change the spectral weighting of binaural information depending on the information content.


2020 ◽  
Vol 31 (01) ◽  
pp. 030-039 ◽  
Author(s):  
Aaron C. Moberly ◽  
Kara J. Vasil ◽  
Christin Ray

AbstractAdults with cochlear implants (CIs) are believed to rely more heavily on visual cues during speech recognition tasks than their normal-hearing peers. However, the relationship between auditory and visual reliance during audiovisual (AV) speech recognition is unclear and may depend on an individual’s auditory proficiency, duration of hearing loss (HL), age, and other factors.The primary purpose of this study was to examine whether visual reliance during AV speech recognition depends on auditory function for adult CI candidates (CICs) and adult experienced CI users (ECIs).Participants included 44 ECIs and 23 CICs. All participants were postlingually deafened and had met clinical candidacy requirements for cochlear implantation.Participants completed City University of New York sentence recognition testing. Three separate lists of twelve sentences each were presented: the first in the auditory-only (A-only) condition, the second in the visual-only (V-only) condition, and the third in combined AV fashion. Each participant’s amount of “visual enhancement” (VE) and “auditory enhancement” (AE) were computed (i.e., the benefit to AV speech recognition of adding visual or auditory information, respectively, relative to what could potentially be gained). The relative reliance of VE versus AE was also computed as a VE/AE ratio.VE/AE ratio was predicted inversely by A-only performance. Visual reliance was not significantly different between ECIs and CICs. Duration of HL and age did not account for additional variance in the VE/AE ratio.A shift toward visual reliance may be driven by poor auditory performance in ECIs and CICs. The restoration of auditory input through a CI does not necessarily facilitate a shift back toward auditory reliance. Findings suggest that individual listeners with HL may rely on both auditory and visual information during AV speech recognition, to varying degrees based on their own performance and experience, to optimize communication performance in real-world listening situations.


2020 ◽  
Vol 55 (4) ◽  
pp. 469-486
Author(s):  
Reid M. Ipser ◽  
Wayne A. Gardner

Abstract The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), and ground-dwelling ant species native to Georgia were observed and studied in tree-canopied and open uncanopied habitats in two state parks in central Georgia. Population density, native species diversity, and interactions of native species with each other and with the invasive S. invicta were determined and compared in the two habitats. Sampling methods included pitfall traps, baits, collection of leaf litter, and visual searches. In comparison to the open uncanopied habitats, red imported fire ant population density was lower in tree-canopied habitats, and native ant species diversity was greater in the canopied habitats. We also observed native species competing with red imported fire ants more intensely in canopied than in open habitats primarily by foraging activity and by predation of S. invicta reproductives. Our results suggest that native ant species can suppress S. invicta population numbers and density and that competition by native ant species should be considered in approaches of managing red imported fire ant.


Sign in / Sign up

Export Citation Format

Share Document