scholarly journals Using multiple self-sorting for switching functions in discrete multicomponent systems

2020 ◽  
Vol 16 ◽  
pp. 2831-2853
Author(s):  
Amit Ghosh ◽  
Michael Schmittel

Over years self-sorting has developed into a powerful tool in supramolecular chemistry, for instance, to promote the error-free formation of intricate multicomponent assemblies. However, in order to use the enormous potential of self-sorting for sophisticated information processing more recent developments have focused on the reversible reconfiguration of multicomponent systems driven by multiple self-sorting protocols. The present mini review will provide an overview over the latest advancements in this field with a focus on reversibly switchable functions in discrete supramolecular systems.

2017 ◽  
Vol 46 (9) ◽  
pp. 2622-2637 ◽  
Author(s):  
Larissa K. S. von Krbek ◽  
Christoph A. Schalley ◽  
Pall Thordarson

In this tutorial review, different aspects of cooperativity in supramolecular chemistry and their thermodynamic analysis are discussed.


2018 ◽  
Vol 375 ◽  
pp. 106-133 ◽  
Author(s):  
Aidan J. Brock ◽  
Jack K. Clegg ◽  
Feng Li ◽  
Leonard F. Lindoy

2014 ◽  
Vol 16 (22) ◽  
pp. 10388-10397 ◽  
Author(s):  
Takeshi Ueki ◽  
Ryo Yoshida

Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure.


Nanophotonics ◽  
2013 ◽  
Vol 2 (4) ◽  
pp. 265-277 ◽  
Author(s):  
Katsuhiko Ariga ◽  
Hirokazu Komatsu ◽  
Jonathan P. Hill

AbstractSupramolecular chemistry has become a key area in emerging bottom-up nanoscience and nanotechnology. In particular, supramolecular systems that can produce a photonic output are increasingly important research targets and present various possibilities for practical applications. Accordingly, photonic properties of various supramolecular systems at the nanoscale are important in current nanotechnology. In this short review, nanophotonics in supramolecular chemistry will be briefly summarized by introducing recent examples of control of photonic responses of supramolecular systems. Topics are categorized according to the fundamental actions of their supramolecular systems: (i) self-assembly; (ii) recognition; (iii) manipulation.


1996 ◽  
Vol 3 (1-3) ◽  
pp. 149-155 ◽  
Author(s):  
Masuo Aizawa ◽  
Nares Damrongchai ◽  
Eiry Kobatake

2009 ◽  
Vol 17 (2) ◽  
pp. 263-280 ◽  
Author(s):  
Jean-Marie Lehn

Chemistry has developed from molecular chemistry, mastering the combination and recombination of atoms into increasingly complex molecules, to supramolecular chemistry, harnessing intermolecular forces for the generation of informed supramolecular systems and processes through the implementation of molecular information carried by electromagnetic interactions. Supramolecular chemistry is actively exploring systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, on the basis of the molecular information stored in the covalent framework of the components and read out at the supramolecular level through specific molecular recognition interactional algorithms, thus behaving as programmed chemical systems. Supramolecular entities as well as molecules containing reversible bonds are able to undergo a continuous change in constitution by reorganization and exchange of building blocks. This capability defines a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels. CDC introduces a paradigm shift with respect to constitutionally static chemistry. It takes advantage of dynamic constitutional diversity to allow variation and selection and thus adaptation. The merging of the features of supramolecular systems – information and programmability; dynamics and reversibility; constitution and structural diversity – points towards the emergence of adaptive chemistry. A further development will concern the inclusion of the arrow of time, i.e. of non-equilibrium, irreversible processes and the exploration of the frontiers of chemical evolution towards the establishment of evolutive chemistry, where the features acquired by adaptation are conserved and transmitted. In combination with the corresponding fields of physics and biology, chemistry thus plays a major role in the progressive elaboration of a science of informed, organized, evolutive matter, a science of complex matter.


Author(s):  
Li Deng

In this invited paper, my overview material on the same topic as presented in the plenary overview session of APSIPA-2011 and the tutorial material presented in the same conference [1] are expanded and updated to include more recent developments in deep learning. The previous and the updated materials cover both theory and applications, and analyze its future directions. The goal of this tutorial survey is to introduce the emerging area of deep learning or hierarchical learning to the APSIPA community. Deep learning refers to a class of machine learning techniques, developed largely since 2006, where many stages of non-linear information processing in hierarchical architectures are exploited for pattern classification and for feature learning. In the more recent literature, it is also connected to representation learning, which involves a hierarchy of features or concepts where higher-level concepts are defined from lower-level ones and where the same lower-level concepts help to define higher-level ones. In this tutorial survey, a brief history of deep learning research is discussed first. Then, a classificatory scheme is developed to analyze and summarize major work reported in the recent deep learning literature. Using this scheme, I provide a taxonomy-oriented survey on the existing deep architectures and algorithms in the literature, and categorize them into three classes: generative, discriminative, and hybrid. Three representative deep architectures – deep autoencoders, deep stacking networks with their generalization to the temporal domain (recurrent networks), and deep neural networks (pretrained with deep belief networks) – one in each of the three classes, are presented in more detail. Next, selected applications of deep learning are reviewed in broad areas of signal and information processing including audio/speech, image/vision, multimodality, language modeling, natural language processing, and information retrieval. Finally, future directions of deep learning are discussed and analyzed.


Sign in / Sign up

Export Citation Format

Share Document