scholarly journals Towards Complex Matter: Supramolecular Chemistry and Self-organization

2009 ◽  
Vol 17 (2) ◽  
pp. 263-280 ◽  
Author(s):  
Jean-Marie Lehn

Chemistry has developed from molecular chemistry, mastering the combination and recombination of atoms into increasingly complex molecules, to supramolecular chemistry, harnessing intermolecular forces for the generation of informed supramolecular systems and processes through the implementation of molecular information carried by electromagnetic interactions. Supramolecular chemistry is actively exploring systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, on the basis of the molecular information stored in the covalent framework of the components and read out at the supramolecular level through specific molecular recognition interactional algorithms, thus behaving as programmed chemical systems. Supramolecular entities as well as molecules containing reversible bonds are able to undergo a continuous change in constitution by reorganization and exchange of building blocks. This capability defines a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels. CDC introduces a paradigm shift with respect to constitutionally static chemistry. It takes advantage of dynamic constitutional diversity to allow variation and selection and thus adaptation. The merging of the features of supramolecular systems – information and programmability; dynamics and reversibility; constitution and structural diversity – points towards the emergence of adaptive chemistry. A further development will concern the inclusion of the arrow of time, i.e. of non-equilibrium, irreversible processes and the exploration of the frontiers of chemical evolution towards the establishment of evolutive chemistry, where the features acquired by adaptation are conserved and transmitted. In combination with the corresponding fields of physics and biology, chemistry thus plays a major role in the progressive elaboration of a science of informed, organized, evolutive matter, a science of complex matter.

2009 ◽  
Vol 13 (04n05) ◽  
pp. 461-470 ◽  
Author(s):  
Joaquim Crusats ◽  
Zoubir El-Hachemi ◽  
Carlos Escudero ◽  
Josep M. Ribó

The formation and structure of the title aggregates are paradigms of the self-assembly of amphiphilic molecular building blocks in supramolecular chemistry. This review summarizes the research in the University of Barcelona on the homoassociation of the water soluble meso 4-sulfonatophenyl-and phenyl substituted porphyrins.


2009 ◽  
Vol 15 (29) ◽  
pp. 7203-7214 ◽  
Author(s):  
Yao-Rong Zheng ◽  
Hai-Bo Yang ◽  
Koushik Ghosh ◽  
Liang Zhao ◽  
Peter J. Stang

Nanophotonics ◽  
2013 ◽  
Vol 2 (4) ◽  
pp. 265-277 ◽  
Author(s):  
Katsuhiko Ariga ◽  
Hirokazu Komatsu ◽  
Jonathan P. Hill

AbstractSupramolecular chemistry has become a key area in emerging bottom-up nanoscience and nanotechnology. In particular, supramolecular systems that can produce a photonic output are increasingly important research targets and present various possibilities for practical applications. Accordingly, photonic properties of various supramolecular systems at the nanoscale are important in current nanotechnology. In this short review, nanophotonics in supramolecular chemistry will be briefly summarized by introducing recent examples of control of photonic responses of supramolecular systems. Topics are categorized according to the fundamental actions of their supramolecular systems: (i) self-assembly; (ii) recognition; (iii) manipulation.


2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Trung Dac Nguyen ◽  
Hanh Thi Hong Nguyen ◽  
Minh Duy Le ◽  
Hung Xuan Truong

Next-generation nanotechnology demands new materials and devices that are highly efficient, multifunctional, cost-effective and environmental friendly. The need to accelerate the discovery of new materials therefore becomes more pressing than ever. Over the past two decades, self-assembly techniques have provided a promising means for fabricating nanomaterials, where the underlying structures are formed by the self-organization of building blocks, such as nanoparticles, colloids and block copolymers, in a similar fashion to biological systems. The fundamental challenges to these bottom techniques are to design suitable assembling units, to tailor their interaction rules and to identify possible assembly pathways. In this report, we will demonstrate how computer simulation has been a powerful tool for tackling these fundamental challenges, providing not only profound insights into the complex interplay between the building blocks’ geometry and their interactions, but also valuable predictions to inspire on-going and future experiment. Theoretical background of self-assembly studies; simulation methods and data analysis tools commonly used will also be discussed.


2018 ◽  
Author(s):  
Weimin Xuan ◽  
Robert Pow ◽  
Qi Zheng, ◽  
Nancy Watfa ◽  
De-Liang Long ◽  
...  

Template synthesis is a powerful and useful approach to build a variety of functional materials and complicated supramolecular systems. Systematic study on how templates structurally evolve from basic building blocks and then affect the templated self-assembly is critical to understand the underlying mechanism and gain more guidance for designed assembly but remains challenging. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using L-ornithine as structure-directing agent. L-ornithine is essential for the formation of such kind of template⊂host assemblies by providing directional forces of hydrogen bonding and electrostatic interactions. Based on the structural relationship between encapsulated templates of {Mo8} (1), {Mo17} (2) and {Mo36} (4), a plausible pathway of the structural evolution of templates is proposed, thus giving more insight on the templated self-assembly of Mo Blue clusters.


2016 ◽  
pp. S165-S178 ◽  
Author(s):  
M. HRUBÝ ◽  
S. K. FILIPPOV ◽  
P. ŠTĚPÁNEK

Self-organization in a polymer system appears when a balance is achieved between long-range repulsive and short-range attractive forces between the chemically different building blocks. Block copolymers forming supramolecular assemblies in aqueous media represent materials which are extremely useful for the construction of drug delivery systems especially for cancer applications. Such formulations suppress unwanted physico-chemical properties of the encapsulated drugs, modify biodistribution of the drugs towards targeted delivery into tissue of interest and allow triggered release of the active cargo. In this review, we focus on general principles of polymer self-organization in solution, phase separation in polymer systems (driven by external stimuli, especially by changes in temperature, pH, solvent change and light) and on effects of copolymer architecture on the self-assembly process.


Sign in / Sign up

Export Citation Format

Share Document