scholarly journals Synthesis of halogenated bicyclic molecules involving Prins cyclization from aldehydes and non-conjugated diene alcohol

2021 ◽  
Author(s):  
Kouichi Matsumoto ◽  
Keisuke Ohtsuka ◽  
Naruto Hasebe ◽  
Kota Terada ◽  
Masahiko Maekawa ◽  
...  

The reactions of aldehydes and a non-conjugated alcohol, (E)-octa-3,7-dien-1-ol, in the presence of halogen-containing reagents afforded the corresponding halogenated bicyclic molecules in good yields. The optimization, scope and limitations of the reactions as well as scale-up reactions have been examined. Quantum chemical calculations helped clarify the microscopic mechanism of a key reaction process, the introduction of a Cl atom to a bicyclic carbocation.

2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2020 ◽  
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda et al. introduced ‘quantum chemistry aided retrosynthetic analysis’ (QCaRA), which uses quantum chemical calculations to search systematically for decomposition paths of the target product and propose a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries. Using a difluoroglycine derivative as a target, this study investigated the ability of QCaRA to suggest various synthetic paths to the target without relying on previous data or the knowledge and experience of chemists. Furthermore, experimental verification of the seemingly most promising path led to the discovery of a synthesis method for the difluoroglycine derivative. The extent of the hands-on expertise of chemists required during the verification process was also evaluated. These insights are expected to advance the applicability of QCaRA to the discovery of viable experimental synthetic routes.


2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


Author(s):  
Lucy van Dijk ◽  
Ruchuta Ardkhean ◽  
Mireia Sidera ◽  
Sedef Karabiyikoglu ◽  
Özlem Sari ◽  
...  

A mechanism for Rh(I)-catalyzed asymmetric Suzuki-Miyaura coupling with racemic allyl halides is proposed based on a combination of experimental studies and quantum chemical calculations. <br>


2019 ◽  
Vol 6 (438) ◽  
pp. 21-29
Author(s):  
Zh.B. Satpaeva ◽  
◽  
O.A. Nurkenov ◽  
K.M. Turdybekov ◽  
L.K. Abulyaissova ◽  
...  

2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


Sign in / Sign up

Export Citation Format

Share Document