Unraveling the Mystery of Auditory Brainstem Response Corrections: The Need for Universal Standards

2017 ◽  
Vol 28 (10) ◽  
pp. 950-960 ◽  
Author(s):  
Linda W. Norrix ◽  
David Velenovsky

Background: The auditory brainstem response (ABR) is used to estimate behavioral hearing thresholds in infants and difficult-to-test populations. Differences between the toneburst ABR and behavioral thresholds exist making the correspondence between the two measures less than perfect. Some authors have suggested that corrections be applied to ABR thresholds to account for these differences. However, because there is no agreed upon universal standard, confusion regarding the use of corrections exists. Purpose: The primary purpose of this article is to review the reasoning behind and use of corrections when the toneburst ABR is employed to estimate behavioral hearing thresholds. We also discuss other considerations that all audiologists should be aware of when obtaining and reporting ABR test results. Results: A review of the purpose and use of corrections reveals no consensus as to whether they should be applied or which should be used. Additionally, when ABR results are adjusted, there is no agreement as to whether additional corrections for hearing loss or the age of the client are necessary. This lack of consensus can be confusing for all individuals working with hearing-impaired children and their families. Conclusions: Toneburst ABR thresholds do not perfectly align with behavioral hearing thresholds. Universal protocols for the use of corrections are needed. Additionally, evidence-based procedures must be employed to obtain valid ABRs that will accurately estimate hearing thresholds.

2019 ◽  
Vol 35 (2) ◽  
Author(s):  
Muhammad Azeem Aslam ◽  
Adeela Javed ◽  
Abdul Moiz

Objectives: To compare the hearing thresholds obtained with auditory brainstem response (ABR) and auditory steady state response (ASSR) audiometry in children with hearing loss. Methods: Hearing thresholds were obtained by ABR and ASSR in children who presented with suspicion of deafness at Ear, nose & throat department of Al-Nafees Medical College Hospital Islamabad, between January to August 2018. The mean hearing thresholds obtained by two tests were compared within each category of severity of deafness. Time taken by both tests was also compared. Results: A total of 57 patients (114 ears) were included in the study. Among them 27 (47.4%) were male and 30 (52.6%) were female. The mean age of patients at presentation was 42 months (±30.9) with age range from one to 12 years. Mean hearing thresholds obtained by click ABR, chirp ABR, ASSR (1, 2, 4 kHz) & ASSR (0.5, 1, 2, 4 kHz) was 56.25 (±27.61), 58.88 (±27.44), 58.03 (±21.26) & 56.35 (±22.86) respectively. Mean thresholds were comparable between click ABR & ASSR (1, 2, 4 kHz) and between chirp ABR & ASSR (0.5, 1, 2, 4 kHz) in all degrees of hearing loss categories except in those patients with normal hearing thresholds. The mean time taken by clicks ABR, chirp ABR and ASSR were four minutes seven seconds, three minutes 15 seconds and 16 minutes and 7 seconds respectively. Conclusions: Hearing thresholds obtained by ABR and ASSR are comparable in all categories of severity of hearing loss. The time taken by ABR is less as compared to ASSR. How to cite this:Aslam MA, Javed A, Moiz A. Comparison of auditory brainstem response and auditory steady state response audiometry by evaluating the hearing thresholds obtained in children with different severity of hearing loss. Pak J Med Sci. 2019;35(2):---------.   doi: https://doi.org/10.12669/pjms.35.2.688 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2019 ◽  
Vol 23 ◽  
pp. 233121651987139 ◽  
Author(s):  
Melissa J. Polonenko ◽  
Ross K. Maddox

The frequency-specific tone-evoked auditory brainstem response (ABR) is an indispensable tool in both the audiology clinic and research laboratory. Most frequently, the toneburst ABR is used to estimate hearing thresholds in infants, toddlers, and other patients for whom behavioral testing is not feasible. Therefore, results of the ABR exam form the basis for decisions regarding interventions and hearing habilitation with implications extending far into the child’s future. Currently, responses are elicited by periodic sequences of toneburst stimuli presented serially to one ear at a time, which take a long time to measure multiple frequencies and intensities, and provide incomplete information if the infant wakes up early. Here, we describe a new method, the parallel ABR (pABR), which uses randomly timed toneburst stimuli to simultaneously acquire ABR waveforms to five frequencies in both ears. Here, we describe the pABR and quantify its effectiveness in addressing the greatest drawback of current methods: test duration. We show that in adults with normal hearing the pABR yields high-quality waveforms over a range of intensities, with similar morphology to the standard ABR in a fraction of the recording time. Furthermore, longer latencies and smaller amplitudes for low frequencies at a high intensity evoked by the pABR versus serial ABR suggest that responses may have better place specificity due to the masking provided by the other simultaneous toneburst sequences. Thus, the pABR has substantial potential for facilitating faster accumulation of more diagnostic information that is important for timely identification and treatment of hearing loss.


2003 ◽  
Vol 14 (10) ◽  
pp. 556-562 ◽  
Author(s):  
Susan A. Small ◽  
David R. Stapells

Behavioral thresholds were measured from 31 adults with normal hearing for 500, 1000, 2000, and 4000 Hz brief tones presented using a B-71 bone oscillator. Three occlusion conditions were assessed: ears unoccluded, one ear occluded, and both ears occluded. Mean threshold force levels were 67, 54, 49, and 41 dB re:1μN peak-to-peak equivalent in the unoccluded condition for 500, 1000, 2000, and 4000 Hz, respectively (corrected for air-conduction pure-tone thresholds). A significant occlusion effect was observed for 500 and 1000 Hz stimuli. These thresholds may be used as the 0 dB nHL (normalhearing level) for brief-tone bone-conduction stimuli for auditory brainstem response testing.


2018 ◽  
Vol 27 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Linda W. Norrix ◽  
David Velenovsky

Purpose The auditory brainstem response (ABR) is a powerful tool for making clinical decisions about the presence, degree, and type of hearing loss in individuals in whom behavioral hearing thresholds cannot be obtained or are not reliable. Although the test is objective, interpretation of the results is subjective. Method This review provides information about evidence-based criteria, suggested by the 2013 Newborn Hearing Screening Program guidelines, and the use of cross-check methods for making valid interpretations about hearing status from ABR recordings. Results The use of an appropriate display scale setting, templates of expected response properties, and objective criteria to estimate the residual noise, signal level, and signal-to-noise ratio will provide quality data for determining ABR thresholds. Cross-checks (e.g., immittance measures, otoacoustic emissions testing, functional indications of a child's hearing) are also needed to accurately interpret the ABR. Conclusions Using evidence-based ABR signal detection criteria and considering the results within the context of other physiologic tests and assessments of hearing function will improve the clinician's accuracy for detecting hearing loss and, when present, the degree of hearing loss. Diagnostic accuracy will ensure that appropriate remediation is initiated and that children or infants with normal hearing are not subjected to unnecessary intervention.


1983 ◽  
Vol 92 (6) ◽  
pp. 651-656 ◽  
Author(s):  
Derald E. Brackmann ◽  
Brian D. Forquer

The purpose of this paper is to describe the audiologic techniques currently used at the Otologic Medical Group, Inc. Auditory threshold in children is determined by a combination of behavioral and objective audiometric techniques. When behavioral techniques fail, auditory brainstem response audiometry combined with impedance audiometry gives a good estimate of hearing thresholds. Impedance audiometry is a valuable addition to the diagnosis of cochlear otosclerosis. This technique is also of benefit in the neurotologic evaluation. Auditory brainstem response audiometry is the most accurate method of detecting an acoustic tumor. We no longer use SISI, tone decay, or Bekesy tests. The newer audiometric studies have greatly improved our evaluation of the auditory system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Feifan Chen ◽  
Fei Zhao ◽  
Nadeem Mahafza ◽  
Wei Lu

Noise-induced cochlear synaptopathy (CS) is defined as a permanent loss of synapses in the auditory nerve pathway following noise exposure. Several studies using auditory brainstem response (ABR) have indicated the presence of CS and increased central gain in tinnitus patients with normal hearing thresholds (TNHT), but the results were inconsistent. This meta-analysis aimed to review the evidence of CS and its pathological changes in the central auditory system in TNHT. Published studies using ABR to study TNHT were reviewed. PubMed, EMBASE, and Scopus databases were selected to search for relevant literature. Studies (489) were retrieved, and 11 were included for meta-analysis. The results supported significantly reduced wave I amplitude in TNHT, whereas the alternations in wave V amplitude were inconsistent among the studies. Consistently increased V/I ratio indicated noise-induced central gain enhancement. The results indicated the evidence of noise-induced cochlear synaptopathy in tinnitus patients with normal hearing. However, inconsistent changes in wave V amplitude may be explained by that the failure of central gain that triggers the pathological neural changes in the central auditory system and/or that increased central gain may be necessary to generate tinnitus but not to maintain tinnitus.


Sign in / Sign up

Export Citation Format

Share Document