Simplifying procedure for a non-destructive, inexpensive, yet accurate trifoliate leaf area estimation in snap bean (Phaseolus vulgaris)

2017 ◽  
Vol 19 (01) ◽  
pp. 15-21 ◽  
Author(s):  
Benyamin Lakitan ◽  
Laily Ilman Widuri ◽  
Mei Meihana
1969 ◽  
Vol 92 (3-4) ◽  
pp. 171-182
Author(s):  
Víctor H. Ramírez-Builes ◽  
Timothy G. Porch ◽  
Eric W. Harmsen

Plant leaf area is an important physiological trait, and direct, non-destructive methods for estimating leaf area have been shown to be effective while allowing for repeated plant sampling.The objective of this study was to evaluate direct, non-destructive leaflet measurements as predictors of actual leaflet area (LA), to test previously developed models, and to develop genotype-specific linear models for leaflet area estimation in common bean (Phaseolus vulgaris L.). For development of appropriate regression models for leaflet area estimation, four common bean genotypes were evaluated under greenhouse conditions: BAT 477, 'Morales', SER 16, and SER 21. The greenhouse-derived models were evaluated under field conditions. Previously developed models were tested and found to overestimate or underestimate leaflet area. Leaflet measurements included maximum leaflet width (W) and maximum leaflet length (L) and L X W. The measurements with the highest values for the coefficient of determination (R2) were W or L X W for BAT 477, SER 16, and Morales (0.97, 0.95, and 0.95, respectively), and L X W for SER 21 (R2 = 0.96). The linear models developed were shown to be effective and robust for predicting leaflet area under both greenhouse and field conditions during both vegetative and reproductive stages of plant development.


1991 ◽  
Vol 45 (3-4) ◽  
pp. 251-254 ◽  
Author(s):  
M.V. Potdar ◽  
K.R. Pawar

2015 ◽  
Vol 75 (1) ◽  
pp. 152-156 ◽  
Author(s):  
MC. Souza ◽  
CL. Amaral

Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA) of Vernonia ferruginea using the length (L) and width (W) leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2). Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. K. Pandey ◽  
Hema Singh

Easy, accurate, inexpensive, and nondestructive methods to determine individual leaf area of plants are a useful tool in physiological and agronomic studies. This paper introduces a cost-effective alternative (called here millimeter graph paper method) for standard electronic leaf area meter, using a millimeter graph paper. Investigations were carried out during August–October, 2009-2010, on 33 species, in the Botanical garden of the Banaras Hindu University at Varanasi, India. Estimates of leaf area were obtained by the equation, leaf area (cm2) = x/y, where x is the weight (g) of the area covered by the leaf outline on a millimeter graph paper, and y is the weight of one cm2 of the same graph paper. These estimates were then compared with destructive measurements obtained through a leaf area meter; the two sets of estimates were significantly and linearly related with each other, and hence the millimeter graph paper method can be used for estimating leaf area in lieu of leaf area meter. The important characteristics of this cost-efficient technique are its easiness and suitability for precise, non-destructive estimates. This model can estimate accurately the leaf area of plants in many experiments without the use of any expensive instruments.


2018 ◽  
Vol 2 (2) ◽  
pp. 1
Author(s):  
M. F. Pommpelli ◽  
J. M. Figueirôa ◽  
F. Lozano-Isla

2020 ◽  
Vol 8 (3) ◽  
pp. 295
Author(s):  
Adriano Bicioni Pacheco ◽  
Jéssica Garcia Nascimento ◽  
Larissa Brêtas Moura ◽  
Tárcio Rocha Lopes ◽  
Sergio Nascimento Duarte ◽  
...  

Leaf area estimation is a very important indicator in studies related to plant anatomy, morphology and physiology, and in many cases, it is a fundamental criterion to understand plant response to input conditions. Although there are leaf area prediction models have been produced for some plant species, a leaf area estimation model has not yet been developed for the zucchini. The objective of this paper was to determine the leaf area based on destructive and non-destructive methods for zucchini. The accuracy of measurement methods was evaluated and compared to determinations of the leaf area by the scanning integration method (LICOR equipment LI 3100C), considered as standard procedure. Non-destructive methods consisted of digital photography and measurement of leaf dimensions (width and length) based on ImageJ software. The destructive methods used were a) leaf area integrator LI-3100C, b) determination of leaf mass and c) weighing of leaf discs punched from the leaves. According to statistical parameters that evaluate the performance of the analyzed methods: determination coefficient (R2), Pearson (r) correlation coefficient, Willmott agreement index (d) and Camargo and Sentelhas performance index (c) the parameters presented values higher than 0.8820, classifying the methods as very good, whereas the modeling efficiency index (NSE) and the percentage of bias (PBIAS) also classified the methods as very good (0.87≤NSE≤0.99; -4.80≤PBIAS≤1.40), except the ImageJ method without correction (NSE=0.77; PBIAS = -22.70).


Fruits ◽  
2010 ◽  
Vol 65 (5) ◽  
pp. 269-275 ◽  
Author(s):  
Renata Bachin Mazzini ◽  
Rafael Vasconcelos Ribeiro ◽  
Rose Mary Pio

Sign in / Sign up

Export Citation Format

Share Document