scholarly journals On approximations of the point measures associated with the Brownian web by means of the fractional step method and the discretization of the initial interval

2020 ◽  
Vol 72 (9) ◽  
pp. 1179-1194
Author(s):  
A. A. Dorogovtsev ◽  
M. B. Vovchanskii

UDC 519.21 We establish the rate of weak convergence in the fractional step method for the Arratia flow in terms of the Wasserstein distance between the images of the Lebesque measure under the action of the flow. We introduce finite-dimensional densities that describe sequences of collisions in the Arratia flow and derive an explicit expression for them. With the initial interval discretized, we also discuss the convergence of the corresponding approximations of the point measure associated with the Arratia flow in terms of such densities.

2007 ◽  
Vol 46 (3) ◽  
pp. 388-395 ◽  
Author(s):  
Yohsuke Imai ◽  
Takayuki Aoki ◽  
Magdi Shoucri

Abstract Two explicit schemes for the numerical solution of the shallow-water equations are examined. The directional-splitting fractional-step method permits relatively large time steps without an iterative process by using a treatment based on the characteristics of the governing equations. The interpolated differential operator (IDO) scheme has fourth-order accuracy in time and space by using a Hermite interpolation function covering local domains, and accurate results are obtained with coarse meshes. It is shown that the two schemes are very efficient for hydrostatic meteorological models from the viewpoints of numerical accuracy and central processing unit time, and the fact that they are explicit makes them suitable for computers with parallel architecture.


2018 ◽  
Vol 129 ◽  
pp. 83-103 ◽  
Author(s):  
Tong Zhang ◽  
Yanxia Qian ◽  
JinYun Yuan

2000 ◽  
Author(s):  
J. Rafael Pacheco ◽  
Arturo Pacheco-Vega ◽  
Sigfrido Pacheco-Vega

Abstract A new approach for the solution of time-dependent calculations of buoyancy driven currents is presented. This method employs the idea that density variation can be pursued by using markers distributed in the flow field. The analysis based on the finite difference technique with the non-staggered grid fractional step method is used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. The problems analyzed include two-fluid flow in a tank with sloping bottom and colliding density currents. The numerical experiments performed show that this approach is efficient and robust.


2014 ◽  
Vol 31 (7) ◽  
pp. 1151-1168 ◽  
Author(s):  
A.A. Aderogba ◽  
M. Chapwanya ◽  
J.K. Djoko

Purpose – For a partial differential equation with a fourth-order derivative such as the Cahn-Hilliard equation, it is always a challenge to design numerical schemes that can handle the restrictive time step introduced by this higher order term. The purpose of this paper is to employ a fractional splitting method to isolate the convective, the nonlinear second-order and the fourth-order differential terms. Design/methodology/approach – The full equation is then solved by consistent schemes for each differential term independently. In addition to validating the second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Findings – The scheme is second-order accuracy, the authors will demonstrate the efficiency of the proposed method by validating the dissipation of the Ginzberg-Lindau energy and the coarsening properties of the solution. Originality/value – The authors believe that this is the first time the equation is handled numerically using the fractional step method. Apart from the fact that the fractional step method substantially reduces computational time, it has the advantage of simplifying a complex process efficiently. This method permits the treatment of each segment of the original equation separately and piece them together, in a way that will be explained shortly, without destroying the properties of the equation.


Sign in / Sign up

Export Citation Format

Share Document