Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography

2013 ◽  
Vol 11 (2) ◽  
pp. 021702-21707 ◽  
Author(s):  
Tong Wu Tong Wu ◽  
Youwen Liu Youwen Liu
2020 ◽  
Vol 10 (14) ◽  
pp. 4936
Author(s):  
Pingping Jia ◽  
Hong Zhao ◽  
Yuwei Qin

A high-speed, high-resolution swept-source optical coherence tomography (SS-OCT) is presented for focusing lens imaging and a k-domain uniform algorithm is adopted to find the wave number phase equalization. The radius of curvature of the laser focusing lens was obtained using a curve-fitting algorithm. The experimental results demonstrate that the measuring accuracy of the proposed SS-OCT system is higher than the laser confocal microscope. The SS-OCT system has great potential for surface topography measurement and defect inspection of the focusing lens.


2014 ◽  
Vol 41 (7) ◽  
pp. 0704001 ◽  
Author(s):  
王玲 Wang Ling ◽  
朱海龙 Zhu Hailong ◽  
涂沛 Tu Pei ◽  
吴开华 Wu Kaihua

2009 ◽  
Vol 7 (10) ◽  
pp. 941-944 ◽  
Author(s):  
吴彤 Tong Wu ◽  
丁志华 Zhihua Ding ◽  
王凯 Kai Wang ◽  
王川 Chuan Wang

2017 ◽  
Vol 3 (2) ◽  
pp. 227-230
Author(s):  
Jonas Golde ◽  
Lars Kirsten ◽  
Edmund Koch

AbstractWe present an approach for polarization sensitive optical coherence tomography (PS-OCT) that solely requires a modification of the light source, a buffered swept source laser. For this purpose a single-mode fiber-based Fourier domain mode locked laser is extended by fourfold buffering with manual fiber polarization controllers to emit alternating sweep polarizations, while the polarization contrast calibration is realized by a high-speed polarimeter. As the introduced setup utilizes standard scanning and detection units, the proposed method is a promising way to enhance various swept source OCT systems by polarization sensitive imaging. Preliminary measurements of a human finger nail with different polarization contrasts demonstrate the feasibility of the concept.


Sign in / Sign up

Export Citation Format

Share Document