scholarly journals An analog of double electromagnetically induced transparency with extremely high group indexes

2013 ◽  
Vol 11 (5) ◽  
pp. 051602-51604 ◽  
Author(s):  
An Yang An Yang ◽  
Changchun Yan Changchun Yan ◽  
Jiebing Tian Jiebing Tian ◽  
Cheng Wang Cheng Wang ◽  
Guiming Li Guiming Li ◽  
...  
Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164 ◽  
Author(s):  
Man Hoai Nam ◽  
Vu Thi Hong Hanh ◽  
Nguyen Ba Tuong ◽  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
...  

A metamaterial (MM), mimicking electromagnetically-induced transparency (EIT) in the GHz regime, was demonstrated numerically and experimentally by exploiting the near-field coupling of asymmetric split-ring and cut-wire resonators. By moving the resonators towards each other, the original resonance dip was transformed to a multi-band EIT. The phenomenon was explained clearly through the excitation of bright and dark modes. The dispersion characteristic of the proposed MM was also investigated, which showed a strongly-dispersive behavior, leading to a high group index and a time delay of the MM. Our work is expected to contribute a simple way to develop the potential devices based on the multi-band EIT effect.


2020 ◽  
Vol 34 (10) ◽  
pp. 2050093
Author(s):  
Bui Son Tung ◽  
Bui Xuan Khuyen ◽  
Pham The Linh ◽  
Nguyen Thanh Tung ◽  
Do Hung Manh ◽  
...  

A planar metamaterial (MM) mimicking electromagnetically-induced transparency (EIT) effect is demonstrated numerically and experimentally in the microwave region. The structure of MM is a periodicity of ring and zigzag spiral resonators, in which each resonator can be excited directly by the external field. By matching the characteristic resonance frequencies of two resonators, the coupling of two bright modes appears, leading to an EIT effect with a transparency peak at 4.86 GHz. Although the geometry of the structure is not perfectly symmetric, the proposed electromagnetically-induced transparency metamaterial (EIT-MM) is insensitive to the polarization of incoming wave. Furthermore, the EIT-MM exhibits a strong dispersion behavior, which leads to a high group index of 2785 and a group delay of 0.83 ns. Our work might be useful to potential applications using EIT-MM such as modulators, filters and sensors.


2020 ◽  
Vol 9 (5) ◽  
pp. 243-246
Author(s):  
Pei-Chen Kuan ◽  
Chang Huang ◽  
Shau-Yu Lan

AbstractWe implement slow-light under electromagnetically induced transparency condition to measure the motion of cold atoms in an optical lattice undergoing Bloch oscillation. The motion of atoms is mapped out through the phase shift of light without perturbing the external and internal state of the atoms. Our results can be used to construct a continuous motional sensor of cold atoms.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Yan-Cheng Wei ◽  
Bo-Han Wu ◽  
Ya-Fen Hsiao ◽  
Pin-Ju Tsai ◽  
Ying-Cheng Chen

Sign in / Sign up

Export Citation Format

Share Document