Intensity modulation of filaments by shaped laser pulses in fused silica

2019 ◽  
Vol 17 (12) ◽  
pp. 123201
Author(s):  
Junwei Chang ◽  
Ruihan Zhu ◽  
Tingting Xi ◽  
Mengning Xu ◽  
Di Wang ◽  
...  
2021 ◽  
Author(s):  
Saba Zafar ◽  
Dong-Wei Li ◽  
Acner Camino ◽  
Jun-Wei Chang ◽  
Zuo-Qiang Hao

Abstract High power supercontinuum (SC) is generated by focusing 800 nm and 400 nm femtosecond laser pulses in fused silica with a microlens array. It is found that the spectrum of the SC is getting broader compared with the case of single laser pulse, and the spectral energy density between the two fundamental laser wavelengths is getting significantly higher by optimizing the phase matching angle of the BBO. It exceeds μJ/nm over 490 nm range which is from 380 nm to 870 nm, overcoming the disadvantage of relative lower power in the ranges far from fundamental wavelength.


2008 ◽  
Vol 92 (4) ◽  
pp. 803-808 ◽  
Author(s):  
D. Puerto ◽  
W. Gawelda ◽  
J. Siegel ◽  
J. Bonse ◽  
G. Bachelier ◽  
...  

2012 ◽  
Author(s):  
Sören Richter ◽  
Fei Jia ◽  
Matthias Heinrich ◽  
Sven Döring ◽  
Stefan Nolte ◽  
...  

2015 ◽  
Vol 40 (24) ◽  
pp. 5726 ◽  
Author(s):  
Zhaohui Wang ◽  
Bin Zeng ◽  
Guihua Li ◽  
Hongqiang Xie ◽  
Wei Chu ◽  
...  

2010 ◽  
Vol 102 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Christian Voigtländer ◽  
Daniel Richter ◽  
Jens Thomas ◽  
Andreas Tünnermann ◽  
Stefan Nolte

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 565 ◽  
Author(s):  
Peng Wang ◽  
Wei Chu ◽  
Wenbo Li ◽  
Yuanxin Tan ◽  
Fang Liu ◽  
...  

Three-dimensional (3D) printing has allowed for the production of geometrically complex 3D objects with extreme flexibility, which is currently undergoing rapid expansion in terms of materials, functionalities, as well as areas of application. When attempting to print 3D microstructures in glass, femtosecond laser-induced chemical etching (FLICE)—which is a subtractive 3D printing technique—has proved itself a powerful approach. Here, we demonstrate the fabrication of macro-scale 3D glass objects of large heights up to ~3.8 cm with an identical lateral and longitudinal feature size of ~20 μm. The remarkable accomplishment is achieved by revealing an unexplored regime in the interaction of ultrafast laser pulses with fused silica, which results in depth-insensitive focusing of the laser pulses inside fused silica.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Han Wang ◽  
Hong Shen ◽  
Zhenqiang Yao

The morphology of microchannels machined by multiple ultrafast laser pulses with 500 fs and 8 ps durations on fused silica plate is predicted by a two-step model with experimental validation in present work. A spike structure at crater boundary with different scales in 500 fs and 8 ps pulse ablation is found in the numerical investigation, which could be attributed to diffraction and attenuation of light intensity in both cases. To analyze the evolution of crater morphology and damaged area with an increasing number of pulses, the distribution of light intensity, lattice temperature, and self-trapped excitons density during certain pulses are studied. The results showed that 500 fs pulses lead to smoother crater boundary, smaller heat affected zone, and larger electrical damage area with respect to 8 ps pulses.


Sign in / Sign up

Export Citation Format

Share Document