Active disturbance rejection and filter control of gyro-stabilized platform

2016 ◽  
Vol 24 (1) ◽  
pp. 169-177 ◽  
Author(s):  
丛 爽 CONG Shuang ◽  
孙光立 SUN Guang-li ◽  
邓 科 DENG Ke ◽  
尚伟伟 SHANG Wei-wei ◽  
沈宏海 SHEN Hong-hai
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xiangyang Zhou ◽  
Chao Yang ◽  
Beilei Zhao ◽  
Libo Zhao ◽  
Zhuangsheng Zhu

This paper presents a high-precision control scheme based on active disturbance rejection control (ADRC) to improve the stabilization accuracy of an inertially stabilized platform (ISP) for aerial remote sensing applications. The ADRC controller is designed to suppress the effects of the disturbance on the stabilization accuracy that consists of a tracking differentiator, a nonlinear state error feedback, and an extended state observer. By the ADRC controller, the effects of both the internal uncertain dynamics and the external multisource disturbances on the system output are compensated as a total disturbance in real time. The disturbance rejection ability of the ADRC is analyzed by simulations. To verify the method, the experiments are conducted. The results show that compared with the conventional PID controller, the ADRC has excellent capability in disturbance rejection, by which the effect of main friction disturbance on the control system can be weakened seriously and the stabilization accuracy of the ISP is improved significantly.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dong Mei ◽  
Zhu-Qing Yu

Purpose This paper aims to study a disturbance rejection controller to improve the anti-interference capability and the position tracking performance of airborne radar stabilized platform that ensures the stability and clarity of synthetic aperture radar imaging. Design/methodology/approach This study proposes a disturbance rejection control scheme for an airborne radar stabilized platform based on the active disturbance rejection control (ADRC) inverse estimation algorithm. Exploiting the extended state observer (ESO) characteristic, an inversely ESO is developed to inverse estimate the unmodeled state and extended state of the platform system known as total disturbances, which greatly improves the estimation performance of the disturbance. Then, based on the inverse ESO result, feedback the difference between the output of the tracking differentiator and the inverse ESO result to the nonlinear state error feedback controller (NLSEF) to eliminate the effects of total disturbance and ensure the stability of the airborne radar stabilized platform. Findings Simulation experiments are adopted to compare the performance of the ADRC inverse estimation algorithm with that of the proportional integral derivative controller which is one of the mostly applied control schemes in platform systems. In addition, classical ADRC is compared as well. The results have shown that the ADRC inverse estimation algorithm has a better disturbance rejection performance when disturbance acts in airborne radar stabilized platform, especially disturbed by continuous airflow under some harsh air conditions. Originality/value The originality of this paper is exploiting the ESO characteristic to develop an inverse ESO, which greatly improves the estimation performance of the disturbance. And the ADRC inverse estimation algorithm is applied to ameliorate the anti-interference ability of the airborne radar stabilization platform, especially the ability to suppress continuous interference under complex air conditions.


2019 ◽  
Vol 48 (12) ◽  
pp. 1213002
Author(s):  
王春阳 Wang Chunyang ◽  
赵尚起 Zhao Shangqi ◽  
史红伟 Shi Hongwei ◽  
刘雪莲 Liu Xuelian

Sign in / Sign up

Export Citation Format

Share Document