АЛМАТЫ ОБЛЫСЫНЫҢ (TILLETIA CARIES (D.C.) TUL. & C. TUL) ПОПУЛЯЦИЯСЫНА ВЕНГРИЯЛЫҚ БИДАЙ ЛИНИЯЛАРЫНЫҢ ТӨЗІМДІЛІГІ

Habarshy ◽  
2021 ◽  
pp. 99-106
Author(s):  
С.Б Бакиров ◽  
А.К Маденова ◽  
Қ. Ғалымбек ◽  
А. Кадир ◽  
Г.М. Сабденалиева

Қатты қаракүйе ауруы (Tilletia caries (DC.) Tul.) күздік бидайдың кең таралған ауруы. Ол әлемнің бидай өсіретін барлық аймақтарында кездеседі. Эпифитотия жылдары бидай өнімінің азаюы мен сапасының нашарлауына алып келеді. Жасанды індет аясында Алматы облысының Tilletia caries (D.C.) Tul. & C. Tul патогеніне венгриялық 21 бидай сорттарының төзімділігі сыналды. Зерттеу жұмысының барысында мақсатқа жету үшін бірнеше әдістер қолданылды. Олар: Tilletia caries (D.C.) Tul. & C. Tul патогенімен бидайды инокуляциялауда А.И. Борггардта-Анпилогованың әдісі қолданылды, Green Seeker (Trimble Navigation Limited, USA) – аппараты арқылы өсімдіктің биомассасының индексі өлшенді (NDVI – Normalized Difference Vegetative Index). Үлгілерді Tilletia caries (D.C.) Tul. & C. Tul қоздырғышымен залалдануын бағалауда М. Қойшыбаев шкаласы қолданылды. Зерттеу нәтижесінде ауруға жоғары төзімді деп 7 бидай сорты ерекшеленді. Олар: Békés, Szemes, Rege, Rába, Ati, Pilis және Vitorlás. Индекс биомасса көрсеткішін (NDVI) есептеу нəтижесінде 6 генотиптің NDVI көрсеткіші жоғары деп табылды. Құрылымдық белгілеріне талдау нəтижесінде Pilis, Rege және Rába сорттары төрт бірдей белгілері бойынша жоғары көрсеткіш көрсетті. Ерте масақтануымен 4 бидай сорты ерекшеленді. Бұл сорттарды селекция бағдарламасына қатты қаракүйе ауруына төзімді үлгі ретінде ұсынуға болады.

HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1176-1183 ◽  
Author(s):  
Chase M. Straw ◽  
Rebecca A. Grubbs ◽  
Kevin A. Tucker ◽  
Gerald M. Henry

Research compared handheld and mobile data acquisitions of soil moisture [volumetric water content (VWC)], soil compaction (penetration resistance), and turfgrass vigor [normalized difference vegetative index (NDVI)] of four natural turfgrass sports fields using two sampling grid sizes (4.8 × 4.8 m and 4.8 × 9.6 m). Differences between the two sampling grid sizes were minimal, indicating that sampling with handheld devices using a 4.8 × 9.6 m grid (120–130 samples) would achieve results similar to the smaller grid size. Central tendencies and data distributions varied among the handheld and mobile devices. Moderate to strong correlation coefficients were observed for VWC and NDVI; however, weak to moderate correlation coefficients were observed for penetration resistance at three of the four locations. Kriged maps of VWC and NDVI displayed similar patterns of variability between handheld and mobile devices, but at different magnitudes. Spatial maps of penetration resistance were inconsistent due to device design and user reliability. Consequently, mobile devices may provide the most reliable results for penetration resistance of natural turfgrass sports fields.


Author(s):  
J. E. M. Mordue

Abstract A description is provided for Tilletia foetida. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On Triticum, Secale, Triticale, Hordeum, Agropyron, Elymus, Sitanion, Lolium. DISEASE: Causes common bunt (stinking or covered smut) of wheat. Tilletia caries (CMI Descriptions 719) causes a virtually identical disease known by the same name. The seed contents inside the pericarp are converted to a mass of teliospores and the seed converted into a 'bunt ball' which ruptures on harvesting, releasing the black spores and the volatile compound trimethylamine which has a foul, fishy odour. Diseased plants are somewhat stunted and the heads of infected plants remain greener than those containing healthy grain and are more slender; the glumes of diseased spikelets are also spread apart. GEOGRAPHICAL DISTRIBUTION: Widely distributed in most countries where wheat is grown but less widespread than T. caries and not apparently in UK (CMI Map 295, ed. 2, 1968). TRANSMISSION: Spores are released when the grain is harvested and are dispersed by air to contaminate healthy grain and soil. Spores germinate in moist soil to produce a basidium and acicular basidiospores (primary sporidia). These fuse to produce a dikaryotic mycelium which may directly infect host seedling coleoptiles or produce further secondary sporidia.


1937 ◽  
Vol 15c (12) ◽  
pp. 547-559 ◽  
Author(s):  
W. R. Foster ◽  
A. W. Henry

Helminthosporium sativum, Fusarium culmorum, Ophiobolus graminis, Leptosphaeria herpotrichoides, Wojnowicia graminis, Erysiphe graminis, Tilletia caries, and Tilletia foetens readily overwinter under natural conditions at Edmonton, Alberta, Canada. The first five of these overwinter at Edmonton in both spore and vegetative stages and are highly resistant to cold. Even in a non-hardened condition several of them survived severe frost. Young germ tubes of H. sativum for instance continued growth after being frozen solid overnight. Fresh agar cultures of H. sativum, F. culmorum and O. graminis grew vigorously after exposure to sub-zero temperatures. Agar cultures of H. sativum and F. culmorum were viable after a 17-day exposure to temperatures ranging from about 0° F. to —50° F.Conidia of H. sativum proved less resistant to freezing and thawing than to continuous freezing. They survived longer than conidia of F. culmorum and F. graminearum. Mycelia of all foot-rot fungi grown on sterilized barley seeds were viable in one case after three months of continuous freezing, and in another after 40 alternate freezings and thawings. H. sativum and F. culmorum growing in soil survived 61 alternate freezings and thawings.H. sativum, F. culmorum and L. herpotrichoides, retained their viability more readily on the soil surface than when buried at depths of from 2 to 12 in. Well aerated soil seemed to favor the survival of H. sativum, although other factors besides aeration probably are involved. Strains of H. sativum from high latitudes were not better adapted to low temperatures than strains from lower latitudes.The bunt fungi, T. caries and T. foetens, are shown to be capable of overwintering at Edmonton in the form of mycelia in winter wheat. Infection of winter wheat from soil-borne spores may occur in western Canada, but in these experiments soil-borne spores did not survive to infect wheat in the spring.Erysiphe graminis overwinters in the perithecial stage at Edmonton. In the studies made, ascospores were differentiated in the spring, when favorable conditions prevailed and before the first infections of winter wheat were observed.


Sign in / Sign up

Export Citation Format

Share Document