scholarly journals A study on the influence of the formulation factors on in vitro release of ketoprofen from sustained release tablets

2021 ◽  
Vol 14 (1) ◽  
pp. 41-48
Author(s):  
Larisa Cimpoaie ◽  
◽  
Luca Liviu Rus ◽  
Rareș Iuliu Iovanov ◽  
◽  
...  

Objectives. The aim of this study was to investigate the influence of formulation factors on in vitro release of ketoprofen from sustained release inert matrix tablets. Materials and methods. Laboratory scale, Ketoprofen sustained release inert matrix tablets were manufactured using Kollidon® SR as matrix formator, by direct tableting of powder blends. The influence of the formulation factors (X1 – matrix formator excipient and X2 – diluent type) on in vitro release of ketoprofen from sustained release tablets was studied by using a full factorial 23 experimental plan. Outcomes. Pharmacotechnical characterization of manufactured laboratory scale batches was performed and all 12 batches fulfilled European Pharmacopeia requests. In vitro release showed a sustained release profile in all cases. Variance analysis (ANOVA) showed a good correlation between experimental conditions and answers. In vitro release testing was performed in phosphate buffer pH = 7.4. Percentage release was determined spectrophotometrically at 258 nm. A decrease in the rate of in vitro release was registered, up to 4 h and 6 h when lactose DC and mannitol DC were used as diluents, respectively. Isomalt DC has increased the rate of in vitro release up to 6 h. Conclusions. In vitro release data, corresponding to formulation N1 shoed a good fitting with Weitbull, Korshmeyer-Peppas and Higuchi models while in vitro release data corresponding to formulation N8 presented a good fitting with Weitbull and Korsmeyer-Peppas. In case of formulations N1 and N8 a non-Fickian diff usion mechanism seems to be involved in drug release from the matrix tablets.

Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2017 ◽  
Vol II (I) ◽  
pp. 10-24
Author(s):  
Zubair Anwar ◽  
Tanveer Ahmed Khan ◽  
Muhammad Farhan Sohail ◽  
Maryam Anwar

Sustained release matrix tablets of venlafaxine were formulated using synthetic polymers (ethylcellulose & hydroxypropyl methylcellulose). Six (06) different batches of matrix tablets of venlafaxine (dose 75 mg) were prepared by the wet granulation method. Polymers were used alone or in combination. The physical properties of compressed tablets were evaluated. In vitro release drug studies were performed in phosphate buffer at pH 6.8 over 24 hours. The drug release data fitted well to the First-order (R2 = 0.9725 � 0.9900). The n value obtained for most batches ranged from 0.523 to 0.946 indicates that the drug is released through an anomalous or non�Fickian transport. Results revealed that the combination of ethyl cellulose (EC) and hydroxypropyl methylcellulose produced a sustained effect compared to hydroxypropyl methylcellulose alone. Formulation F6 containing single polymer (EC) showed the highest control over initial burst release, and extended-release of the drug continued up to 16 hours.


2020 ◽  
Vol 13 (2) ◽  
pp. 79-86
Author(s):  
Alexandra Pali ◽  
◽  
Georgiana Cristina Ordean ◽  
Greta Maria Pomian ◽  
Luca Liviu Rus ◽  
...  

2015 ◽  
Vol 16 (2) ◽  
pp. 177-183
Author(s):  
Md Ziaur Rahman ◽  
Sayed Koushik Ahamed ◽  
Sujan Banik ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of Losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method along with Kollidon SR and Methyl Cellulose as release retardant polymers. The evaluation involves two stages- the physical properties studies of tablets and in vitro release kinetics assessment. The USP paddle method was selected to perform the dissolution test and 900 ml phosphate buffer of pH 6.8 was used as dissolution medium at 50 rpm at 370C. The release kinetics were analyzed. All the formulations followed Higuchi release kinetics. When the release data was plotted into Korsmeyer-Peppas equation, then it was confirmed that F-1, F-2, F-3, F-4 and F-5 exhibited non-fickian type drug release whereas F-6 exhibited fickian type drug release from the tablet matrix. The in-vitro release studies revealed that the formulation F-2 can be taken as an ideal or optimized formulation of sustained release tablets for 24 hours release as it fulfills all the requirements for sustained release tablet. Furthermore, when the tablets were preheated at different temperature (300C, 450C, 600C) before dissolution they showed decrease in drug release compared with ambient temperature DOI: http://dx.doi.org/10.3329/bpj.v16i2.22301 Bangladesh Pharmaceutical Journal 16(2): 177-183, 2013


2018 ◽  
Vol 21 (1) ◽  
pp. 24-34
Author(s):  
K Latha ◽  
T Chinni Kranthi ◽  
Naseeb Basha Shaik

The present study is based on preparation of sustained release matrix tablets of tolterodine tartrate (for overactive bladder treatment) using guggul resin. Tolterodine tartrate is a highly soluble drug, to increase the duration of action the release of the drug has to be sustained. Natural resin is used as a polymer to sustain the release of drug, which was isolated from guggul gum by petroleum ether. Natural polymers are economical, biodegradable and can be chemically modified. Different ratios of drug and guggul resin were tried in the formulation of sustained release matrix tablets of tolterodine tartrate. Wet granulation technique was adopted for preparation of tolterodine tartrate granules, showed good flow properties and compressibility. The fabricated tablets were evaluated for various physicochemical characteristics and in vitro release studies like hardness, thickness, weight variation, friability, drug content and content uniformity were found to be within the limits. The drug release of optimized formulation (F6) was fitted to various kinetic models and the R2 value is 0.988 and the n value of drug release is 0.787. Therefore, the drug release follows zero order with non-fickian diffusion. The mechanism of drug release involves erosion and diffusion. Stability studies were performed for the optimized formulation as per ICH guidelines climatic zone III and were found to be stable with insignificant changes in physicochemical characteristics and in vitro release studies.Bangladesh Pharmaceutical Journal 21(1): 24-34, 2018


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Sign in / Sign up

Export Citation Format

Share Document