scholarly journals Release Profile of Losartan Potassium from Formulated Sustained Release Matrix Tablet

2015 ◽  
Vol 16 (2) ◽  
pp. 177-183
Author(s):  
Md Ziaur Rahman ◽  
Sayed Koushik Ahamed ◽  
Sujan Banik ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of Losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method along with Kollidon SR and Methyl Cellulose as release retardant polymers. The evaluation involves two stages- the physical properties studies of tablets and in vitro release kinetics assessment. The USP paddle method was selected to perform the dissolution test and 900 ml phosphate buffer of pH 6.8 was used as dissolution medium at 50 rpm at 370C. The release kinetics were analyzed. All the formulations followed Higuchi release kinetics. When the release data was plotted into Korsmeyer-Peppas equation, then it was confirmed that F-1, F-2, F-3, F-4 and F-5 exhibited non-fickian type drug release whereas F-6 exhibited fickian type drug release from the tablet matrix. The in-vitro release studies revealed that the formulation F-2 can be taken as an ideal or optimized formulation of sustained release tablets for 24 hours release as it fulfills all the requirements for sustained release tablet. Furthermore, when the tablets were preheated at different temperature (300C, 450C, 600C) before dissolution they showed decrease in drug release compared with ambient temperature DOI: http://dx.doi.org/10.3329/bpj.v16i2.22301 Bangladesh Pharmaceutical Journal 16(2): 177-183, 2013

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2012 ◽  
Vol 48 (4) ◽  
pp. 621-628 ◽  
Author(s):  
Shahid Sarwar ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method, along with Kollidon SR as release retardant polymer. The amount of losartan potassium remains fixed (100 mg) for all the three formulations whereas the amounts of Kollidon SR were 250 mg, 225 mg, and 200 mg for F-1, F-2, and F-3 respectively. The evaluation involves three stages: the micromeritic properties evaluation of granules, physical property studies of tablets, and in-vitro release kinetics studies. The USP apparatus type II was selected to perform the dissolution test, and the dissolution medium was 900 mL phosphate buffer pH 6.8. The test was carried out at 75 rpm, and the temperature was maintained at 37 ºC ± 0.5 ºC. The release kinetics was analyzed using several kinetics models. Higher polymeric content in the matrix decreased the release rate of drug. At lower polymeric level, the rate and extent of drug release were enhanced. All the formulations followed Higuchi release kinetics where the Regression co-efficient (R²) values are 0.958, 0.944, and 0.920 for F-1, F-2, and F-3 respectively, and they exhibited diffusion dominated drug release. Statistically significant (P<0.05) differences were found among the drug release profile from different level of polymeric matrices. The release mechanism changed from non-fickian (n=0.489 for F-1) to fickian (n=0.439 and 0.429 for F-2, and F-3 respectively) as a function of decreasing the polymer concentration. The Mean Dissolution Time (MDT) values were increased with the increase in polymer concentration.


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


2021 ◽  
Vol 11 (5) ◽  

Methimazole is active pharmaceutical ingredient effectively utilized in hyperthyroidism. Methimazole inhibits peroxidase as well as iodine interactions with thyroglobulin to produce triiodothyronine with thyroxine. Methimazole shows very low protein binding (1-10%) bounds to plasma proteins and easily metabolized by liver. In this investigation, efforts given to develop a sustained release matrix tablet of Methimazole. Sustained release drug delivery systems are for a maximum of 24 hours clinical effectiveness. Such systems are primarily for the drugs of short elimination half-life. However, drugs with long half-life also qualify if a reduction in steady state fluctuation is desired. Matrix tablets of methimazole were prepared by utilizing direct compression method. HPMC along with Sodium carboxy methyl cellulose used to retard drug release from the dosage form. Matrix tablets of methimazole were evaluated for different quality control test to improve quality of the product. In vitro release study of methimazole matrix tablets shows that polymer percentage used in the formula is enough to extend the release of the drug for at least 12 hr. In dissolution study of matrix of methimazole formulation F2 shows maximum drug release 97.93 % at the end of 6 hours while F1 shows least 83.64 %. Keywords: Matrix tablet, Methimazole, Sustained Release


Author(s):  
Y Madhusudan Rao ◽  
Sunil Reddy ◽  
Panakanti Pavan Kumar ◽  
Rajanarayana Kandagatla

 The aim of present study was to design the concept of bilayered tablets containing Glimepride for immediate release using sodium starch glycolate as super disintegrant and Metformin hydrochloride (HCl) for sustained release by using  Hydroxyl propyl methyl cellulose (HPMC K 4M) and Sodium Carboxy Methyl cellulose (SCMC) as the matrix forming polymer, and PVPK-30 as binder. The tablets were evaluated for physicochemical properties. All the values were found to be satisfactory. In vitro release studies were carried out as per USP in pH 1.2 with (0.1% sodium lauryl sulphate w/v) and phosphate buffer pH 6.8 using the apparatus I. The release kinetics of Metformin HCl was evaluated using the regression coefficient analysis. The formulated tablets (F5) shows zero order release and diffusion was the dominant mechanism of drug release. The polymer (HPMC K4M, SCMC) and binder PVPK-30 had significant effect on the release of Metformin HCl matrix tablets (F5). Thus formulated bilayer tablets provided immediate release of Glimepride and Metformin HCl as sustained release over a period of 8 hours.  Stability studies and FT-IR studies clearly indicated that there is no drug –polymer interaction.


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


2012 ◽  
Vol 11 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Shimul Halder ◽  
Madhabi Lata Shuma ◽  
Abu Shara Shamsur Rouf

The objective of the present study was to develop a once-daily sustained release matrix tablet of Aceclofenac using hydroxypropyl methyl cellulose (Methocel K 100M CR) as release controlling factor and to  evaluate drug release parameters as per various release kinetic models. The tablets were prepared by direct  compression method. The powder blends were evaluated for angle of repose, loose bulk density, tapped bulk density,  compressibility index, total porosity and drug content etc. The tablets were subjected to thickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolution study was carried out for 24  hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus in phosphate buffer (pH 7.4). The powder blends showed satisfactory flow properties, compressibility index and drug content etc. All the tablet formulations showed acceptable pharmacotechnical properties and complied with pharmacopoeial specifications. The results of dissolution studies indicated that the formulation F-3 (40% Methocel K100M CR of total weight of tablet) could extend the drug release up to 24 hours and the total release pattern was very close to the theoretical release profile. By comparing the dissolution profiles with the originator brand of Arrestin SR, the formulation F-3 exhibited drug release profile like originator brand. From this study, a decrease in release kinetics of the drug was observed by  increasing the polymer concentration. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport, which  was only dependent on the type and amount of polymer used. The drug release followed both diffusion and erosion  mechanism in all cases. The drug release from the formulation (F-3) was satisfactory after 3 months storage in 400C  and 75% RH. Besides, this study explored both of the optimum concentration and effect of polymer(s) on  Aceclofenac release pattern from the tablet matrix for 24 hour period. The matrix tablet of Aceclofenac using HPMC  with molecular weight of K100M controlled the drug release effectively for 24 hours; hence the formulation can be  considered as a once daily sustained release tablet of Aceclofenac in order to improve patient compliance. DOI: http://dx.doi.org/10.3329/dujps.v11i1.12485 Dhaka Univ. J. Pharm. Sci. 11(1): 37-43, 2012 (June)


Author(s):  
R. PAWAR ◽  
S. JAGDALE ◽  
D. RANDIVE

Objective: The present study aimed to develop a new SR metformin hydrochloride (MH) gastroretentive formulation with novel excipient (NE), which has better floatation and can be prepared with more simple pharmaceutical techniques for the treatment of diabetes Mellitus. Methods: A gastro-retentive floating matrix tablet (GFT) formulation of MH was prepared using various concentrations of PEO (Polyox WSR-303) and hydroxypropyl methylcellulose K100M (HPMC K100 M) and Floating agent (novel excipient) to achieve desirable TFT, FLT and drug release. The wet granulation method was selected using isopropyl alcohol as a binder for the preparation of tablets. D-optimal non-simplex mixture design was used for the selection of suitable polymer concentrations and floating agents. Release kinetics was used to determine the mechanism of drug release. Results: It was observed that GFT with optimum quantities of PEO, HPMC K100M, and the floating agent showed 100 % of drug release in 24h with FT up to 24h and minimum FLT of less than 2 min. Formulation with an in vitro release profile slower to the marketed sample was prepared. Conclusion: A sustained-release (GFT) of MH tablets using PEO-, HPMC K100M, and an effervescent system was successfully prepared. AGFT formulation with an in vitro release profile slower to the marketed sample that releases MH for 24h may suitable for once-daily dosing can be prepared.


1970 ◽  
Vol 9 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Ishtiaq Ahmed ◽  
Mohiuddin Abdul Quadir ◽  
Md Habibur Rahman

The objective of the present study was to develop once-daily sustained-release matrix tablets of naproxen, one of the most potent non-steroidal anti-inflammatory agents used in the treatment of arthritic pain. The tablets were prepared by direct compression method using hydrophilic matrix materials like Methocel® K4M CR and Methocel® K15M CR. The tablets were subjected to measurement of thickness, diameter, weight variation, drug content, hardness and friability, the results of which were within compendial specification range. In vitro release studies were carried out by the USP basket method and were carried out at pH 7.4 buffer for ten hours. The results of dissolution studies indicated that higher polymer content in the matrix (40%) decreased the release rate of the drug as shown in formulation NMK4MF6 and NMK15MF6 (where lactose content is zero). The most successful formulations of the study, exhibited satisfactory drug release which was very close to the theoretical release profile. All the formulations exhibited diffusion-dominated drug release. Key words: Naproxen; Methocel® K4M CR; Methocel® K15M CR; Sustained release; Matrix tablets DOI: 10.3329/dujps.v9i1.7429 Dhaka Univ. J. Pharm. Sci. 9(1): 47-52 2010 (June)


Author(s):  
Nagasamy Venkatesh D ◽  
Sankar S ◽  
S N Meyyanathan ◽  
K Elango ◽  
B Suresh ◽  
...  

 The objective of the present investigation was to develop and evaluate sustained release matrix tablets of prochlorperazine maleate employing different types and levels of hydrophilic matrix agents namely hydroxyl propyl methyl cellulose (HPMC), carbopol and combination of these polymers by wet granulation technique. Prior to compression process, the prepared granules were evaluated for its flow and compression characteristics. The in vitro dissolution of the newly formulated sustained release tablets were compared with standard formulation. The excipients used in this study did not alter the physicochemical properties of the drug, as indicated by the thermal analysis using differential scanning calorimetry technique. The flow and compression characteristics of the prepared granules significantly improved by virtue of granulation process. Also, the prepared matrix tablets showed good mechanical properties in terms of hardness and friability. HPMC based tablet formulations alone showed high release retarding efficiency as compared to carbopol, carbopol and HPMC combinations. The studies indicated that the drug release can be modulated by varying concentrations of polymers. Mathematical analysis of the release kinetics indicated the nature of the drug release from the matrix tablets followed quasi-fickian obeying first order kinetics. 


Sign in / Sign up

Export Citation Format

Share Document