scholarly journals Labeling of Single Cells in the Central Nervous System of Drosophila melanogaster

Author(s):  
Christof Rickert ◽  
Thomas Kunz ◽  
Kerri-Lee Harris ◽  
Paul Whitington ◽  
Gerhard Technau
1988 ◽  
Vol 8 (2) ◽  
pp. 778-785 ◽  
Author(s):  
S C Wadsworth ◽  
L S Rosenthal ◽  
K L Kammermeyer ◽  
M B Potter ◽  
D J Nelson

We isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobase poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.


Open Biology ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 190245
Author(s):  
Eléanor Simon ◽  
Sergio Fernández de la Puebla ◽  
Isabel Guerrero

Specific neuropeptides regulate in arthropods the shedding of the old cuticle (ecdysis) followed by maturation of the new cuticle. In Drosophila melanogaster , the last ecdysis occurs at eclosion from the pupal case, with a post-eclosion behavioural sequence that leads to wing extension, cuticle stretching and tanning. These events are highly stereotyped and are controlled by a subset of crustacean cardioactive peptide (CCAP) neurons through the expression of the neuropeptide Bursicon (Burs). We have studied the role of the transcription factor Odd-paired (Opa) during the post-eclosion period. We report that opa is expressed in the CCAP neurons of the central nervous system during various steps of the ecdysis process and in peripheral CCAP neurons innerving the larval muscles involved in adult ecdysis. We show that its downregulation alters Burs expression in the CCAP neurons. Ectopic expression of Opa, or the vertebrate homologue Zic2 , in the CCAP neurons also affects Burs expression, indicating an evolutionary functional conservation. Finally, our results show that, independently of its role in Burs regulation, Opa prevents death of CCAP neurons during larval development.


1990 ◽  
Vol 111 (3) ◽  
pp. 817-828 ◽  
Author(s):  
D Pauli ◽  
C H Tonka ◽  
A Tissieres ◽  
A P Arrigo

The alpha-crystallin-related heat shock (stress) protein hsp27 is expressed in absence of heat shock during Drosophila melanogaster development. Here, we describe the tissue distribution of this protein using an immunoaffinity-purified antibody. In embryos, hsp27 translated from maternal RNA is uniformly distributed, except in the yolk. During the first, second, and early third larval stages, hsp27 expression is restricted to the brain and the gonads. These tissues are characterized by a high level of proliferating cells. In late third instar larvae and early pupae, in addition to the central nervous system and the gonads, all the imaginal discs synthesize hsp27. The disc expression seems restricted to the beginning of their differentiation since it disappears during the second half of the pupal stage: no more hsp27 is observed in the disc-derived adult organs. In adults, hsp27 is still present in some regions of the central nervous system, and is also expressed in the male and female germ lines where it accumulates in mature sperm and oocytes. The transcript and the protein accumulate in oocytes since the onset of vitellogenesis with a uniform distribution similar to that found in embryos. The adult germ lines transcribe hsp27 gene while no transcript is detected in the late pupal and adult brain. These results suggest multiple roles of hsp27 during Drosophila development which may be related to both the proliferative and differentiated states of the tissues.


Sign in / Sign up

Export Citation Format

Share Document