scholarly journals Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo

Author(s):  
Dorota N. Komar ◽  
Alfonso Mouriz ◽  
José A. Jarillo ◽  
Manuel Piñeiro
2004 ◽  
pp. 129-146 ◽  
Author(s):  
Hogune Im ◽  
Jeffrey A. Grass ◽  
Kirby D. Johnson ◽  
Meghan E. Boyer ◽  
Jing Wu ◽  
...  

2006 ◽  
Vol 397 (1) ◽  
pp. 169-177 ◽  
Author(s):  
Wei-Dong Liu ◽  
Hong-Wei Wang ◽  
Michelle Muguira ◽  
Mary B. Breslin ◽  
Michael S. Lan

INSM1/IA-1 (insulinoma-associated 1) is a developmentally regulated zinc-finger transcription factor, exclusively expressed in the foetal pancreas and nervous system, and in tumours of neuroendocrine origin. We have identified an INSM1 binding site in the neuroD/β2 promoter and demonstrated transcriptional repressor activity of INSM1 by transient transfection assay. A chromatin immunoprecipitation assay confirmed that in vivo INSM1 is situated on the promoter region of the neuroD/β2 gene. In an attempt to elucidate the molecular mechanism of transcriptional repression by the INSM1 gene, cyclin D1 was identified as an interacting protein by using a 45-day-old human foetal brain cDNA library and a yeast two-hybrid screen. The physical association between INSM1 and cyclin D1 was confirmed by in vitro and in vivo pull-down assay. Cyclin D1 co-operates with INSM1 and suppresses neuroD/β2 promoter activity. Co-immunoprecipitation of INSM1, cyclin D1 and HDACs (histone deacetylases) in mammalian cells revealed that INSM1 interacts with HDAC-1 and -3 and that this interaction is mediated through cyclin D1. Overexpression of cyclin D1 and HDAC-3 significantly enhanced the transcriptional repression activity of INSM1 on the neuroD/β2 promoter. A further chromatin immunoprecipitation assay confirmed that HDAC-3 occupies this same region of the neuroD/β2 promoter, by forming a transcription complex with INSM1. Thus we conclude that INSM1 recruits cyclin D1 and HDACs, which confer transcriptional repressor activity.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 458-470 ◽  
Author(s):  
Lifa Lee ◽  
Hiromi Asada ◽  
Fumie Kizuka ◽  
Isao Tamura ◽  
Ryo Maekawa ◽  
...  

The ovulatory LH surge induces rapid up-regulation of steroidogenic acute regulatory (StAR) protein and rapid down-regulation of aromatase (Cyp19a1) in granulosa cells (GCs) undergoing luteinization during ovulation. This study investigated in vivo whether epigenetic mechanisms including histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression. GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h)CG injection. StAR mRNA levels rapidly increased after hCG injection, reached a peak at 4 h, and then remained higher compared with 0 h until 12 h. Cyp19a1 mRNA levels gradually decreased after hCG injection and reached their lowest level at 12 h. A chromatin immunoprecipitation assay revealed that levels of histone-H4 acetylation (Ac-H4) and trimethylation of histone-H3 lysine-4 (H3K4me3) increased whereas H3K9me3 and H3K27me3 decreased in the StAR promoter after hCG injection. On the other hand, the levels of Ac-H3 and -H4 and H3K4me3 decreased, and H3K27me3 increased in the Cyp19a1 promoter after hCG injection. Chromatin condensation, which was analyzed using deoxyribonuclease I, decreased in the StAR promoter and increased in the Cyp19a1 promoter after hCG injection. A chromatin immunoprecipitation assay also showed that binding activities of CAATT/enhancer-binding protein β to the StAR promoter increased and binding activities of phosphorylated-cAMP response element binding protein to the Cyp19a1 promoter decreased after hCG injection. These results provide in vivo evidence that histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression by altering chromatin structure of the promoters in GCs undergoing luteinization during ovulation.


2013 ◽  
Vol 8 (3) ◽  
pp. 539-554 ◽  
Author(s):  
Ronnie Blecher-Gonen ◽  
Zohar Barnett-Itzhaki ◽  
Diego Jaitin ◽  
Daniela Amann-Zalcenstein ◽  
David Lara-Astiaso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document